Templates of ship movement anthropomorphic control: design and application
https://doi.org/10.21821/2309-5180-2024-16-2-224-235
Abstract
The process of designing templates of anthropomorphic ship movement control is described in the paper. The solutions of the sequence of modeling problems are used in the state space of the ergatic “skipper-ship” system for the example of a ship of “Volga-Don” type. Parametric interval uncertainties are taken into account in the initial mathematical model of the controlled object. They influence the unambiguity of solving the optimal control problem in the classical formulation. Factors of a priori uncertainty are the draft of the ship and the depth of the ship’s passage. Numerical solutions to the problem of optimal ship movement control in terms of speed are obtained for intervals ends of the mathematical model parameters values. The solutions are used in the design of templates to describe and account for the uncertainty of the allocation of management resources according to the methodology of interaction planning in an ergatic system. The templates of anthropomorphic control in the skipper-ship system are represented by sequences of element numbers of a set of normal systems of ordinary differential equations. They are constructed in a five-dimensional space of states according to a transformed mathematical model of the ship. Each normal system of ordinary differential equations displays in mathematical form an incomplete representation of the action of virtual controls and the corresponding elementary motion of the ship due to the existence of uncertainties. The procedures for constructing various options for the allocation of anthropomorphic control resources and corresponding templates of anthropomorphic control according to expert estimates based on a variety of solutions to the optimal control problem are proposed. The constructive property of the templates of anthropomorphic control is illustrated by the specific examples. New templates can be built by joining standard templates in a certain sequence, and the standard templates themselves can be determined using information about the performed movements of the ship controls, taking into account the experience of navigation. It is shown that it is possible to use such a posteriori information to train the automatic control machine of the “skipper-ship” system by rational management methods, including those that cannot be obtained as solutions to mathematical problems of optimal control. The library of anthropomorphic control templates is presented as an integral part of the knowledge base when using the technology of expert systems in the construction of automatic control machine with artificial intelligence.
About the Authors
V. O. TyrvaRussian Federation
Tyrva, Vladimir O. — PhD, Associate Professor,
5/7, Dvinskaya Str., St. Petersburg, 198035.
E. V. Bova
Russian Federation
Bova, Elena V. — Associate Professor,
5/7 Dvinskaya Str., St. Petersburg, 198035.
A. Yu. Rumyantsev
Russian Federation
Rumyantsev, Alexey Yu. — PhD,
5/7 Dvinskaya Str., St. Petersburg, 198035.
References
1. Tyrva, V. O., and A. V. Saushev. “About realizations of compatible control impacts on the object in the man-machine systems.” Mekhatronika, Avtomatizatsiya, Upravlenie 21.5 (2020): 274–281. DOI: 10.17587/mau.21.274–281.
2. Tyrva, Vladimir O., Aleksandr V. Saushev, and Olga V. Shergina. “Anthropomorphic Control over Electromechanical System Motion: Simulation and Implementation.” 2020 International Russian Automation Conference (RusAutoCon). IEEE, 2020. 374–379. DOI: 10.1109/RusAutoCon49822.2020.9208070.
3. Tyrva, V. O. “Avtomatizatsiya ergaticheskoi sistemy «chelovek-mashina» na osnove primeneniya v nei antropomorfnogo upravleniya.” Automation in industry 2 (2021): 3–7. DOI: 10.25728/avtprom.2021.02.01.
4. Tyrva, V. O., and A. V. Saushev. “Analytical approach to the design of joint motion control of the ergatic system “skipper-ship”.” Mekhatronika, Avtomatizatsiya, Upravlenie 22.9 (2021): 459–467. DOI: 10.17587/mau.22.459–467.
5. Saushev, Alecsandr, and Vladimir Tyrva. “On the use of templates in joint control of the object movement of the human-machine ergatic system.” AIP Conference Proceedings. Vol. 2476. No. 1. AIP Publishing, 2023. DOI: 10.1063/5.0103854.
6. Tyrva, V. O., and A. V. Saushev. “Targeting of Joint Control in the “Man-Machine” System: Modeling and Structuring.” Mekhatronika, Avtomatizatsiya, Upravlenie 24.2 (2023): 67–74. DOI: 10.17587/mau.24.67–74.
7. Pontryagin, L.S., V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko. Matematicheskaya teoriya optimal’nykh protsessov. M.: Nauka, 1976.
8. Makarov, I.M., V. M. Lokhin, S. V. Man’ko, and M. P. Romanov. Iskusstvennyi intellekt i intellektual’nye sistemy upravleniya. M.: Nauka, 2006.
9. Tyrva, Vladimir O. “Modeling an ergatic system for joint control of ship motion.” Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova 13.2 (2021): 266–277. DOI: 10.21821/2309-5180-2021-13-2-266-277.
10. Moiseev, N. N. Elementy teorii optimal’nykh sistem. M.: Glavnaya redaktsiya fiziko-matematicheskoi literatury, izd-vo «Nauka», 1974.
11. Yuschenko, A. S. “Human-robot: compatibility and cooperation.” Robotics and technical cybernetics 1(2) (2014): 4–9.
12. Pospelov, D. A. Situatsionnoe upravlenie: teoriya i praktika. M.: Nauka, 1986.
13. Filimonov, A. B., and N. B. Filimonov. “Situational Approach in the Problems of Automation Control by Technical Objects.” Mekhatronika, Avtomatizatsiya, Upravlenie 19.9 (2018): 563–578. DOI: 10.17587/mau.19.563–578.
14. Korenev, G. V. Tsel’ i prisposoblyaemost’ dvizheniya. M., Nauka, 1974.
15. Popov, E. P., A. F. Vereshchagin, and S. L. Zenkevich. Manipulyatsionnye roboty dinamika i algoritmy. M.: Glavnaya redaktsiya fiziko-matematicheskoi literatury, izd-vo «Nauka», 1978.
16. Cataldi, Elisabetta, F. Real, A. Suárez, P. A. Di Lillo, F. Pierri, G. Antonelli, F. Caccavale, G. Heredia, and A. Ollero. “Set-based inverse kinematics control of an anthropomorphic dual arm aerial manipulator.” 2019 International Conference on robotics and automation (ICRA). IEEE, 2019. 2960–2966. DOI: 10.1109/ICRA.2019.8793470.
17. Lee, Hyeonbeom, and H. Jin Kim. “Constraint-based cooperative control of multiple aerial manipulators for handling an unknown payload.” IEEE Transactions on Industrial Informatics 13.6 (2017): 2780–2790. DOI: 10.1109/TII.2017.2692270.
18. Jimenez-Cano, A. E., G. Heredia, M. Bejar, K. Kondak, and A. Ollero. “Modelling and control of an aerial manipulator consisting of an autonomous helicopter equipped with a multi-link robotic arm.” Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 230.10 (2016): 1860–1870. DOI: 10.1177/0954410015619442.
19. Cooper, Alan, Robert Reimann, and David Cronin. About Face 3. The Essentials of Interaction Design. 3rd edition. Wiiey, 2007.
20. Raskin, Jef. The humane interface: new directions in the design of computer systems. Addison-Wesley Publishing Professional, 2000.
21. Tyrva, V. O. “O teoreticheskikh osnovaniyakh avtomatizatsii protsessov upravleniya v sisteme “chelovekmashina”.” Automation in industry 1 (2023): 47–53. DOI: 10.25728/avtprom.2023.01.08.
Review
For citations:
Tyrva V.O., Bova E.V., Rumyantsev A.Yu. Templates of ship movement anthropomorphic control: design and application. Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova. 2024;16(2):224-235. (In Russ.) https://doi.org/10.21821/2309-5180-2024-16-2-224-235