Preview

Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova

Advanced search

STABILITY OF EXTERNAL CANTILEVER ELEMENTS OF DEEP-SEA VEHICLES

https://doi.org/10.21821/2309-5180-2020-12-2-347-358

Abstract

In this paper, the deformation of a rectangular cantilever plate under conditions of complex bending, when a uniform transverse load acts on its surface, and a uniform compressive load is applied to the parallel free edges in the plane of the plate, is determined. Cantilever plates are widely used in aviation, rocket technology, astronautics, military shipbuilding, civil engineering (cantilever plates) and other industries. Most often, the plate is loaded with a transverse load (uniform, concentrated, etc.) and under its influence experiences bending deformations. In the cantilever thin external elements of deep-sea vehicles (submarines, deep-sea torpedoes, bathyscaphes), the compressive load from the water pressure in the plate plane, applied to its free edges, can be significant and causes stability loss. The problem is described by a system of fourth-order partial differential equations with respect to the desired deflection function. As a parameter, the basic bending equation contains a uniformly distributed compressive force. The deflection function is obtained during the iterative process of superposition of the two main correcting functions in the form of hyperbolic-trigonometric series over two coordinates. These functions in turn compensate for the residuals of the boundary conditions from each of them. The criterion for the end of the iterative process is the desire to zero all residuals. The search for the first and subsequent critical loads is carried out by iterating the load value until a new stable form of equilibrium appears. The spectrum of the first few critical loads is given and the corresponding equilibrium forms are presented.

About the Authors

S. O. Baryshnikov
Admiral Makarov State University of Maritime and Inland Shipping
Russian Federation


M. V. Sukhoterin
Admiral Makarov State University of Maritime and Inland Shipping
Russian Federation


T. P. Knysh
Admiral Makarov State University of Maritime and Inland Shipping
Russian Federation


References

1. Ярцев Б. А. Композитные конструкции наружного корпуса и элементов оперения подводной лодки / Б. А. Ярцев, В. М. Шапошников // Труды ЦНИИ им. акад. А. Н. Крылова. - 2017. - № 1 (379). - С. 36-44.

2. Xiang-sheng С. The bending stability and vibration of cantilever rectangular plates / C. Xiang-sheng // Applied Mathematics and Mechanics. - 1987. - Vol. 8. - Is. 7. - Pp. 673-683. DOI: 10.1007/BF02458265.

3. Xiang-sheng С. On buckling of cantilever rectangular plates under symmetrical edge loading / C. Xiang-sheng // Applied Mathematics and Mechanics. - 1990. - Vol. 11. - Is. 4. - Pp. 377- 383. DOI: 10.1007/BF02015121.

4. Исаулова Т. Н. Устойчивость консольно защемленной косоугольной неоднородной пластины в сверхзвуковом потоке газа / Т. Н. Исаулова, И. М. Лавит // Прикладная механика и техническая физика. - 2011. - Т. 52. - № 4 (308). - С. 191-204.

5. Сухотерин М. В. Устойчивость сжатых панелей обшивки судна / М. В. Сухотерин, Т. П. Кныш, Л. В. Анненков // Вестник государственного университета морского и речного флота имени адмирала С. О. Макарова. - 2013. - № 2. - С. 51-58.

6. Сухотерин М. В. Определение спектра критических нагрузок и форм равновесия сжатых панелей обшивки корпуса судна / М. В. Сухотерин, Е. В. Потехина, Л. В. Анненков // Вестник государственного университета морского и речного флота имени адмирала С. О. Макарова. - 2014. - № 2 (24). - С. 44-51.

7. Анненков Л. В. Исследование устойчивости защемленной прямоугольной пластины, сжатой в одном направлении / Л. В. Анненков // Вестник государственного университета морского и речного флота имени адмирала С. О. Макарова. - 2015. - № 3 (31). - С. 48-53. DOI: 10.21821/2309-5180-2015-7-3-48-53.

8. Sukhoterin M. V. Influence of transverse loading on the stability clamped rectangular plate / M. V. Sukhoterin, S. O. Baryshnikov, T. P. Knysh, N. F. Pizhurina // MATEC Web of Conferences. - EDP Sciences, 2018. - Vol. 239. - Pp. 01022. DOI: 10.1051/matecconf/201823901022.

9. Osadebe N. N. Stability analysis of SSSS thin rectangular plate using multi - degrees of freedom Taylor Maclaurin’s series in Galerkin’s variational method / N. N. Osadebe, V. C. Nwokike, O. A. Oguaghamba // Nigerian Journal of Technology. - 2016. - Vol. 35. - Is. 3. - Pp. 503-509. DOI: 10.4314/njt.v35i3.5.

10. Eslami M. R. Buckling and postbuckling of beams, plates, and shells / M. R. Eslami, J. Eslami, Jacobs. - Cham, Switzerland: Springer International Publishing, 2018. - 588 p. DOI: 10.1007/978-3-319-62368-9_4.

11. Тимошенко С. П. Пластинки и оболочки / С. П. Тимошенко, С. Войновский-Кригер. - М.: Гос. изд-во физ.-мат. литературы, 1963. - 635 с.

12. Сухотерин М. В. Расчет прямоугольных пластин Рейсснера / М. В. Сухотерин, С. О. Барышников. - СПб.: Изд-во Политехн. ун-та, 2015. - 151 с.


Review

For citations:


Baryshnikov S.O., Sukhoterin M.V., Knysh T.P. STABILITY OF EXTERNAL CANTILEVER ELEMENTS OF DEEP-SEA VEHICLES. Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova. 2020;12(2):347-358. (In Russ.) https://doi.org/10.21821/2309-5180-2020-12-2-347-358

Views: 162


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2309-5180 (Print)
ISSN 2500-0551 (Online)