Preview

Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova

Advanced search

STATIC OBSTACLES AVOIDANCE ALGORITHM FOR UNMANNED SHIP

https://doi.org/10.21821/2309-5180-2021-13-3-307-315

Abstract

An algorithm for the formation of a route for unmanned ship along a given trajectory and avoiding static obstacles is proposed in the paper. The algorithm is implemented by combining the trajectory motion function and the function that generates circulation around a given point (obstacle). The route of movement is defined by a set of waypoints with coordinates connected by straight line segments. The obstacle is specified in the form of the center coordinate and the radius of the obstacle. To move along the trajectory, an algorithm based on the use of the sum of the gradient vector of the auxiliary function and the vector that specifies the direction on a given route section is used. This allows the vessel to move along a given route. Circulations around the obstacle are formed on the basis of a special class of vector fields proposed in the works of D. Panagou, H. G. Tanner, K. J. Kyriakopoulos. By orienting the circulation in the direction of movement along the trajectory at the point of the obstacle and limiting it to a given maneuvering zone, a navigation vector field, which is a set of vectors showing the required direction of movement at a specific point, is formed. To reduce the probability of an unmanned ship piling up on an obstacle and to ensure safe maneuvering, an additional “repulsive” vector field, which forms a “ forbidden” zone in the navigation vector field, is introduced. The algorithms under study are implemented in the Matlab / Simulink modeling environment. The results of numerical experiments are presented for various combinations of algorithm parameters. The results are presented graphically in the form of displaying navigation vector fields showing the movement direction of the unmanned ship, and displaying obstacles, prohibited zones and maneuvering zones. Further improvement of the algorithm for solving problems of avoiding dynamic and group obstacles is planned.

About the Authors

A. A. Dyda
Maritime State University named after admiral G. I. Nevelskoy
Russian Federation


I. I. Pushkarev
Maritime State University named after admiral G. I. Nevelskoy
Russian Federation


K. N. Chumakova
Maritime State University named after admiral G. I. Nevelskoy
Russian Federation


References

1. Koikas G. New Technology trends in the design of Autonomous Ships / G. Koikas, M. Papoutsidakis, N. Nikitakos // International Journal of Computer Application. - 2019. - Vol. 178. - No. 25. - Pp. 4-7. DOI: 10.5120/ijca2019919043.

2. Komianos A. The autonomous shipping era. operational, regulatory, and quality challenges / A. Komianos // TransNav: International Journal on Marine Navigation and Safety of Sea Transportation. - 2018. - Vol. 12. - No. 2. - Pp. 335-348. DOI: 10.12716/1001.12.02.15.

3. Kretschmann L. Analyzing the economic benefit of unmanned autonomous ships: An exploratory cost-comparison between an autonomous and a conventional bulk carrier / L. Kretschmann, H. C. Burmeister, C. Jahn // Research in transportation business & management. - 2017. - Vol. 25. - Pp. 76-86. DOI: 10.1016/j.rtbm.2017.06.002.

4. Wróbel K. Towards the assessment of potential impact of unmanned vessels on maritime transportation safety / K. Wróbel, J. Montewka, P. Kujala // Reliability Engineering & System Safety. - 2017. - Vol. 165. - Pp. 155-169. DOI: 10.1016/j.ress.2017.03.029.

5. Дмитриев В. И. Методы обеспечения безопасности мореплавания при внедрении беспилотных технологий / В. И. Дмитриев, В. В. Каретников // Вестник Государственного университета морского и речного флота имени адмирала С. О. Макарова. - 2017. - Т. 9. - № 6. - С. 1149-1158. DOI: 10.21821/2309-5180-2017-9-6-1149-1158.

6. Смоленцев С. В. Простая аналитическая модель движения судна / С. В. Смоленцев, Д. В. Исаков // Вестник Государственного университета морского и речного флота имени адмирала С. О. Макарова. - 2019. - Т. 11. - № 1. - С. 7-21. DOI: 10.21821/2309-5180-2019-11-1-7-21.

7. Каретников В. В. Основные принципы построения алгоритмов управления беспилотным судном в акватории порта / В. В. Каретников, С. В. Рудых, А. А. Буцанец // Речной транспорт (XXI век). - 2019. - № 2 (90). - С. 55-57.

8. Пшихопов В. Х. Гибридная система управления движением безэкипажного судна в заданную точку / В. Х. Пшихопов, М. Ю. Медведев, В. В. Соловьев // Известия ЮФУ. Технические науки. - 2019. - № 1 (203). - С. 163-176. DOI: 10.23683/2311-3103-2019-1-163-176.

9. Дыда А. А. Подход к управлению судном по траектории на основе градиента вспомогательной функции / А. А. Дыда, К. Н. Чумакова, И. И. Пушкарев // Научные проблемы водного транспорта. - 2020. - № 65. - С. 27-36. DOI: 10.37890/jwt.vi65.125.

10. Panagou D. Control of nonholonomic systems using reference vector fields / D. Panagou, H. G. Tanner, K. J. Kyriakopoulos // 2011 50th IEEE Conference on Decision and Control and European Control Conference. - IEEE, 2011. - Pp. 2831-2836. DOI: 10.1109/CDC.2011.6160922.

11. Panagou D. Motion planning and collision avoidance using navigation vector fields / D. Panagou // 2014 IEEE International Conference on Robotics and Automation (ICRA). - IEEE, 2014. - Pp. 2513-2518. DOI: 10.1109/ICRA.2014.6907210.

12. Сирота А. А. Методы и алгоритмы анализа данных и их моделирование в Matlab: учеб. пособие / А. А. Сирота. - СПб.: БХВ - Петербург, 2016. - 384 с.

13. Yi G. Research on Underactuated USV Path Following Algorithm / G. Yi, Z. Liu, J. Q. Zhang, J. Dong // 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). - IEEE, 2020. - Vol. 1. - Pp. 2141-2145. DOI: 10.1109/ITNEC48623.2020.9085222.


Review

For citations:


Dyda A.A., Pushkarev I.I., Chumakova K.N. STATIC OBSTACLES AVOIDANCE ALGORITHM FOR UNMANNED SHIP. Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova. 2021;13(3):307-315. (In Russ.) https://doi.org/10.21821/2309-5180-2021-13-3-307-315

Views: 286


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2309-5180 (Print)
ISSN 2500-0551 (Online)