Preview

Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova

Advanced search

MECHANISM OF NEGATIVE ANTHROPOGENIC INFLUENCE OF SHIP’S POWER PLANTS COOLING SYSTEMS

https://doi.org/10.21821/2309-5180-2020-12-6-1068-1077

Abstract

The largest amount of zoo- and phytoplankton, fish eggs and fish fry inhabit the upper sea layers, usually the shelf area. Therefore, the influence of ship’s cooling system on the marine biodiversity is considered. The intake of cooling sea water by ships and other marine technical objects occurs at a depth of about 10 m, the area where a great number of fish fry and fish eggs is concentrated. Thus, it has been shown that the plankton that gets to the cooling system during the intake of cooling sea water dies. An open-loop cooling system sucks in with outboard water these organisms, which, passing through filters, pipelines, fittings, etc., mostly perish under the mechanical and thermal influence. Existing filters and fish protection devices do not prevent this extermination; as a result, the biological productivity of seas decreases. In the paper the ways of solving this problem are proposed. The issues related to the implementation of the closed-loop cooling systems for power plants of the marine technical installations operating without consumption of outboard cooling water are considered. The implementation of such systems ensures high reliability and environmentally safe operation. Based on the results of the research, the examples of practical implementation of such systems are given. The issue related to the use of gas-liquid intensification of heat removal from sea water for closed-loop cooling systems of ship power plants is considered.

About the Authors

K. Yu. Fedorovskiy
Sevastopol State University
Russian Federation


N. K. Fedorovskaya
Sevastopol State University
Russian Federation


V. V. Yenivatov
Kerch State Maritime Technological University
Russian Federation


References

1. Медведев Г. В. Особенности очистки отработавших газов судовых энергетических установок в пористых проницаемых каталитических материалах / Г. В. Медведев, Н. Н. Горлова // Труды Крыловского государственного научного центра. - 2020. - № 3 (393). - С. 45-53. DOI: 10.24937/2542-2324-2020-3-393-45-53.

2. Ващинников А. Е. Новые направления в разработке сетчатых рыбозащитных устройств / А. Е. Ващинников, А. А. Васильев, К. В. Илюшин, В. Д. Шульгин // Материалы докладов 4-й Всерос. конф. с междунар. участием. - Борок: Акварос, 2010. - С. 9-13.

3. Vidic R. D. A solution to water crisis in energy production: feasibility of using impaired waters for coal-fired power plant cooling / R. D. Vidic, Li H., S. H. Chien, J. D. Monnell, D. Dzombak, M. K. Hsieh // 27th Annual International Pittsburgh Coal Conference 2010, PCC 2010. - 2010. - Pp. 362-378.

4. Дмитриев Б. Ф. Компенсация неактивной мощности в судовых электроэнергетических системах / Б. Ф. Дмитриев, С. Я. Галушин, А. Н. Калмыков, М. А. Максимова // Морские интеллектуальные технологии. - 2019. - № 3-2 (45). - С. 127-134.

5. Sosnovsky L. A. Crack growth resistance of steel of the main circulating pipeline of nuclear power plant cooling contour / L. A. Sosnovsky, A. V. Bogdanovich, S. S. Shcherbakov // 19th European Conference on Fracture: Fracture Mechanics for Durability, Reliability and Safety, ECF 2012. - 2012. - Pp. 1612-1617.

6. Speight M. R. Marine Ecology: Concepts and Applications / M. R. Speight, P. A. Henderson. - John Wiley & Sons, 2013. - 272 р.

7. Пат. 2599218 Российская Федерация, МПК F25B 5/02, F25B 49/02. Охлаждающий контур, установка для осушки газа охлаждением и способ управления охлаждающим контуром / Ф. К. Балтюс; заяв. и патентообл. Атлас Копко Эрпауэр, Намлозе Веннотсхап (BE). - № 2015107191/06; заявл. 22.07.2013; опубл. 10.10.2016, Бюл. № 28.

8. Reynolds J. Z. Power plant cooling systems: policy alternatives / J. Z. Reynolds // Science. - 1980. - Vol. 207. - Is. 4429. - Pp. 367-372. DOI: 10.1126/science.207.4429.367.

9. Скворцов Б. А. Единая электроэнергетическая система с системой электродвижения повышенной частоты для перспективных судов с турбогенераторной энергетической установкой / Б. А. Скворцов // Труды ЦНИИ им. акад. А. Н. Крылова. - 2014. - № 81 (365). - С. 51-64.

10. Щербаков М. В. Мультиагентная система моделирования производства и потребления электроэнергии в гибридных энергетических системах / М. В. Щербаков, А. С. Набиуллин, В. А. Камаев // Инженерный вестник Дона. - 2012. - № 2 (20). - С. 217-221.

11. Fedorovsky K. Yu. The efficiency of the 30 cooling systems of ship power plants with the environmental factor / K. Yu. Fedorovsky, N. K. Fedorovskaya, V. V. Enivatov // Вестник Керченского государственного морского технологического университета. - 2020. - № 3. - С. 30-38. DOI: 10.47404/2619-0605_2020_3_30.

12. Sokolov S. Dynamics Models of Synchronized Piecewise Linear Discrete Chaotic Systems of High Order / S. Sokolov, A. Zhilenkov, S. Chernyi, A. Nyrkov, D. Mamunts // Symmetry. - 2019. - Vol. 11. - Is. 2. - Pp. 236. DOI: 10.3390/sym11020236

13. Avdeev B. Improving the Electricity Quality by Means of a Single-Phase Solid-State Transformer / B. Avdeev, A. Vyngra, S. Chernyi // Designs. - 2020. - Vol. 4. - Is. 3. - Pp. 35. DOI: 10.3390/designs4030035.

14. Tokarev D. A. Investigation of impact jets flow in heat sink device of closed-circuit cooling systems / A. Tokarev, V. V. Yenivatov, S. S. Sokolov, V. L. Erofeev // IOP Conference Series: Materials Science and Engineering. - 2018. - Pp. 042108-042108. DOI: 10.1088/1757-899X/327/4/042108.


Review

For citations:


Fedorovskiy K.Yu., Fedorovskaya N.K., Yenivatov V.V. MECHANISM OF NEGATIVE ANTHROPOGENIC INFLUENCE OF SHIP’S POWER PLANTS COOLING SYSTEMS. Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova. 2020;12(6):1068-1077. (In Russ.) https://doi.org/10.21821/2309-5180-2020-12-6-1068-1077

Views: 155


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2309-5180 (Print)
ISSN 2500-0551 (Online)