Preview

Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova

Advanced search

MULTI-AGENT SYSTEM FOR DISTRIBUTED ENERGY SYSTEM CONTROL

https://doi.org/10.21821/2309-5180-2020-12-5-945-954

Abstract

The main trend of modern energy systems is smart grids that satisfy modern requirements in the field of energy efficiency and reliability. Achieving these requirements is due to technologies such as energy storage systems, two-way electricity exchange, renewable sources, and others. These technologies are the basis of distributed power systems, which, due to redundancy, make it possible to provide energy for themselves, as well as return additional energy to the primary network. Control algorithms play an important role in this process. The control of a distributed power system using a multi-agent approach, which is an alternative to the traditional control of all processes in the system using a single central processor, is considered in the paper. The proposed approach provides interaction between all objects of the distributed system, transforming them into abstract intelligent nodes - agents with a some degree of freedom in making decisions on the energy distribution. Objects in the distributed power system can be various energy sources, including renewable resources, energy storage devices, as well as various types of devices that are loads in relation to the power grid. In this paper, algorithms for the operation of a multi-agent system are being developed. The JADE (Java Agent Development Environment) platform and the MATLAB / Simulink software package, which implements the mathematical model of the power system, are used to simulate the interaction between the agents of the distributed energy system. As part of the main task of the multi-agent system, the response to emergency events occurring in the system is modeled. It is shown that in the case when the power generated in the system is less than the required one, the loads with the lowest priorities begin to switch off sequentially until the power generated by the alternative sources exceeds the power consumed by the loads. Then, Raspberry Pi, single-board computers based on the BCM2837B0 controller with a large set of input-output ports and a number of communication interfaces are used to prototype the developed system and check algorithms.

About the Authors

A. Yu. Kuzin
ITMO University
Russian Federation


D. V. Lukichev
ITMO University
Russian Federation


G. L. Demidova
ITMO University
Russian Federation


References

1. Бердников Р. Н. Основные положения концепции интеллектуальной электроэнергетической системы России с активно-адаптивной сетью / Р. Н. Бердников, Ю. А. Дементьев, Ю. И. Моржин, Ю. Г. Шакарян // Энергия Единой сети. - 2012. - № 4 (4). - С. 4-11.

2. Moharm K. State of the art in big data applications in microgrid: a review / K. Moharm // Advanced Engineering Informatics. - 2019. - Vol. 42. - Pp. 100945. DOI: 10.1016/j.aei.2019.100945.

3. Международная морская организация (ИМО) [Электронный ресурс]. - Режим доступа: http://www.imo.org (дата обращения: 13.09.2020).

4. Глущенко П. В. Активно-адаптивные электросети: интеллектуальный мультиагентный диагностико-прогнозирующий комплекс и интеллектуальный алгоритм мультиагента решений диагностического мониторинга / П. В. Глущенко // Управление экономическими системами: электронный научный журнал. - 2014. - № 8 (68). - С. 1.

5. Malik F. H. A review: Agents in smart grids / F. H. Malik, M. Lehtonen // Electric Power Systems Research. - 2016. - Vol. 131. - Pp. 71-79. DOI: 10.1016/j.epsr.2015.10.004.

6. Stone P. Multiagent systems: A survey from a machine learning perspective / P. Stone, M. Veloso // Autonomous Robots. - 2000. - Vol. 8. - Is. 3. - Pp. 345-383. DOI: 10.1023/A:1008942012299.

7. Roche R. Multi-agent systems for grid energy management: A short review / R. Robin, B. Blunier, A. Miraoui, V. Hilaire, A. Koukam // IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society. - IEEE, 2010. - Pp. 3341-3346. DOI: 10.1109/IECON.2010.5675295.

8. Kiran P. Multi-agent based systems on micro grid - а review / P. Kiran, K. R. M. V. Chandrakala, T. N. P. Nambiar // 2017 international conference on intelligent computing and control (I2C2). - IEEE, 2017. - Pp. 1-6. DOI: 10.1109/I2C2.2017.8321880.

9. Morstyn T. Control strategies for microgrids with distributed energy storage systems: An overview / T. Morstyn, B. Hredzak, V. G. Agelidis // IEEE Transactions on Smart Grid. - 2016. - Vol. 9. - Is. 4. - Pp. 3652-3666. DOI: 10.1109/TSG.2016.2637958.

10. Poggi A. Extending JADE for agent grid applications / A. Poggi, M. Tomaiuolo, P. Turci // 13th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises. - IEEE, 2004. - Pp. 352-357. DOI: 10.1109/ENABL.2004.30.

11. Bellifemine F. L. Developing multi-agent systems with JADE / F. L. Bellifemine, G. Caire, D. Greenwood. - John Wiley & Sons, 2007. - Vol. 7. - 300 p.

12. Upton E. Raspberry Pi User Guide / E. Upton, G. Halfacree. - 4th Edition. - Chichester: Wiley, 2016. - 320 p.


Review

For citations:


Kuzin A.Yu., Lukichev D.V., Demidova G.L. MULTI-AGENT SYSTEM FOR DISTRIBUTED ENERGY SYSTEM CONTROL. Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova. 2020;12(5):945-954. (In Russ.) https://doi.org/10.21821/2309-5180-2020-12-5-945-954

Views: 249


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2309-5180 (Print)
ISSN 2500-0551 (Online)