Preview

Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova

Advanced search

SPLINE INTERPOLATION FOR BUILDING THREE-DIMENSIONAL BATHYMETRIC MODELS AT CHARTING INLAND WATERWAYS

https://doi.org/10.21821/2309-5180-2020-12-5-894-905

Abstract

A modified method for compiling electronic navigational charts of the Russian Federation inland waterways is proposed in the paper. This method allows to significantly speed up the process by means of automated construction of digital terrain models of the bottom relief. The aim of the method is to reduce costs associated with creating and maintaining an up-to-date collection of electronic navigational charts at cartography departments and offices of the inland waterways Administrations. A continuous survey grid is required to build a digital terrain model of the bottom relief. Such a grid can be obtained using a multibeam echo sounder. However, inland waterway hydrographic operations are mainly conducted with single beam echo sounders. Depth values obtained from surveying with a single beam echo sounder always form an irregular grid. The frequency of depths measured in this way does not allow building three-dimensional models. Therefore, it is necessary to mathematically complete the relief of the waterway bottom. The densification of the depth grid can be done using mathematical interpolation. The methods of interpolation implemented in cartographic and geoinformation software, as well as methods used by cartographers when working manually are analyzed. The analysis has showed that an irregular grid is always used when working manually. As for the software, only interpolation methods based on calculations performed with a regular grid are used, since these methods are easier to implement and require less computing power. The downside is that these methods lead to significant errors. To build three-dimensional bathymetric models with the smallest deviation from the true values, the method of biquadratic spline interpolation on an irregular grid is proposed. Digital terrain models of the bottom relief are proposed to be used for inland waterway cartography to automatically place isobaths, simplify the placement of fairways, and provide additional visual control of the quality of survey work.

About the Authors

E. A. Ratner
Admiral Makarov State University of Maritime and Inland Shipping
Russian Federation


A. I. Zaitsev
Admiral Makarov State University of Maritime and Inland Shipping; Scientific industrial enterprise “Marinerus”, Ltd
Russian Federation


M. A. Kvasnoy
Industry Center for Information systems development and implementation
Russian Federation


References

1. Степанченко А. Л. Современные технологии обработки и представления пространственных данных / А. Л. Степанченко, К. С. Лотова, В. В. Шлапак, И. И. Лонский // Информация и космос. - 2019. - № 1. - С. 139-142.

2. Павлова А. И. Применение методов цифрового моделирования рельефа для создания карт пластики / А. И. Павлова // Сборник научных трудов XII Международной научной конференции «Современные инструментальные системы, информационные технологии и инновации». - 2015. - С. 279-281.

3. Cebecauer T. Processing digital terrain models by regularized spline with tension: tuning interpolation parameters for different input datasets / T. Cebecauer, J. Hofierka, M. Suri // Proceedings of the Open source GIS-GRASS users conference. - 2002. - Pp. 123-134.

4. Прохоренков А. А. Использование трехмерных навигационных карт для повышения безопасности судовождения по внутренним водным путям / А. А. Прохоренков // International Journal of Advanced Studies. - 2019. - Т. 9. - № 1. - С. 26-49. DOI: 10.12731/2227-930X-2019-1-26-49.

5. Майоров А. А. Перспективы развития компьютерных технологий создания цифровых моделей рельефа / А. А. Майоров, Т. К. Нгуен // Известия высших учебных заведений. Геодезия и аэрофотосъемка. - 2011. - № 4. - С. 107-110.

6. Alcaras E. Interpolation single beam data for sea bottom GIS modelling / E. Alcaras, L. Carnevale, C. Parente // International Journal of Emerging Trends in Engineering Research. - 2020. - Vol. 8. - No. 2. - Pp. 591-597. DOI: 10.30534/ijeter/2020/50822020.

7. Флоринский И. В. Трехмерное моделирование рельефа: применение пакета Blender / И. В. Флоринский, С.В. Филиппов // ИнтерКарто. ИнтерГИС. - 2018. - Т. 24. - № 2. - С. 250-261. DOI: 10.24057/2414-9179-2018-2-24-250-261.

8. Митюнина И. Ю. Особенности создания цифровых моделей геофизических полей геостатическими методами / И. Ю. Митюнина // Геология и полезные ископаемые Западного Урала. - 2019. - № 2 (39). - С. 236-240.

9. Parente C. Interpolation of Single Beam Echo Sounder Data for 3D Bathymetric Model / C. Parente, A. Vallario // International Journal of Advanced Trends in Computer Science and Engineering. - 2019. - Vol. 10. - No. 10. - Pp. 6-13.

10. Amante C. J. Accuracy of interpolated bathymetry in digital elevation models / C. J. Amante, B. W. Eakins // Journal of Coastal Research. - 2016. - Is. 76. - Pp. 123-133. DOI: 10.2112/SI76-011.

11. Chaplot V. Accuracy of interpolation techniques for the derivation of digital elevation models in relation to landform types and data density / V. Chaplot, F. Darboux, H. Bourennane, S. Leguédois, N. Silvera, K. Phachomphon // Geomorphology. - 2006. - Vol. 77. - Is. 1-2. - Pp. 126-141. DOI: 10.1016/j.geomorph.2005.12.010.

12. Li J. A Review of Spatial Interpolation Methods for Environmental Scientists / J. Li, A. D. Heap. - Canberra, Australia: Commonwealth of Australia, 2008. - 137 p.

13. Erdogan S. A comparision of interpolation methods for producing digital elevation models at the field scale / S. Erdogan // Earth surface processes and landforms. - 2009. - Vol. 34. - Is. 3. - Pp. 366-376. DOI: 10.1002/esp.1731.

14. Guo Q. Effects of topographic variability and lidar sampling density on several DEM interpolation methods / Q. Guo, W. Li, H. Yu, O. Alvarez // Photogrammetric Engineering & Remote Sensing. - 2010. - Vol. 76. - Is. 6. - Pp. 701-712. DOI: 10.14358/PERS.76.6.701.

15. Wu C.-Y. Comparison of different spatial interpolation methods for historical hydrographic data of the lowermost Mississippi River / C.-Y. Wu, J. Mossa, L. Mao, M. Almulla // Annals of GIS. - 2019. - Vol. 25. - Is. 2. - Pp. 133-151. DOI: 10.1080/19475683.2019.1588781.

16. Руководство пользователя ArcGIS [Электронный ресурс]. - Режим доступа: https://desktop.arcgis.com/ru/arcmap/latest/extensions/3d-analyst/fundamentals-of-3d-surfaces.htm (дата обращения: 12.05.2020).

17. Amante C. J. Estimating coastal digital elevation model uncertainty / C. J. Amante // Journal of Coastal Research. - 2018. - Vol. 34. - Is. 6. - Pp. 1382-1397. DOI: 10.2112/JCOASTRES-D-17-00211.1.

18. Павлова А. И. Анализ методов интерполирования высот точек для создания цифровых моделей рельефа / А.И. Павлова // Автометрия. - 2017. - Т. 53. - № 2. - С. 86-94. DOI: 10.15372/AUT20170210.

19. Wang K. A study of cubic spline interpolation / K. Wang // InSight: Rivier Academic Journal. - 2013. - Vol. 9. - Is. 2. - Pp. 1-15.


Review

For citations:


Ratner E.A., Zaitsev A.I., Kvasnoy M.A. SPLINE INTERPOLATION FOR BUILDING THREE-DIMENSIONAL BATHYMETRIC MODELS AT CHARTING INLAND WATERWAYS. Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova. 2020;12(5):894-905. (In Russ.) https://doi.org/10.21821/2309-5180-2020-12-5-894-905

Views: 251


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2309-5180 (Print)
ISSN 2500-0551 (Online)