Preview

Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova

Advanced search

INTERPOLATION OF THE NAVIGATIONAL FUNCTION BY THE LAGRANGE TYPE SPLINE

https://doi.org/10.21821/2309-5180-2020-12-1-57-70

Abstract

The issue of any navigational isoline interpolation by cubic spline of Lagrange type has been considered in detail. The developed approach is of independent practical interest; meanwhile the task of present study is implemented in an integrated way with the finite basic method. In fact, two conceptions are majorized: a method focused on associated Lagrange multipliers in the vicinity of the optimum of the task solution and coordinate B-spline that provides iterative finding of the result within the given accuracy limits. It is demonstrated the synchronous coincidence of Lagrange splines with B-splines at nodal points using the isogeometric construction principle with difference in contours of «step-functions» and «hat-functions». The harmonized mathematical model has allowed you to realize the compromise between the Lagrange analogies and the basic finite construction for the smooth interpolation of navigational function at chaotic state of metering data «noised» by errors. The interpolation of abstract navigational isoline by set of Lagrange splines is geometrically interpreted. The detailed algorithm with new mathematical tools is presented. The task functionality can be modified before restoring the navigational isosurface on the improvised net patch. As a discussion, the author’s idea of the local interpolation applicability, provided that an additional compositional identity is introduced in order to calculate spline coefficients using explicit formulas, has been offered. The traditional formalization is transformed for logical connection establishment of spline coefficients with the measured navigational parameters. The locality allows you to manipulate invariant transformations between two different spline presentations with the formation of a single multilink attribute of bit algorithmization. Emphasis is placed on the computational advantages of the new approach on the solution stability and convergence. The hybrid unified algorithm displaces the spectrum of possibilities for processing navigational information to the search for solutions to the impossible tasks of modern navigation.

About the Author

I. V. Yuyukin
Admiral Makarov State University of Maritime and Inland Shipping
Russian Federation


References

1. Sayevand K. Cubic B-spline collocation method and its application for anomalous fractional diffusion equations in transport dynamic systems / K. Sayevand, A. Yazdani, F. Arjang // Journal of Vibration and Control. - 2016. - Vol. 22. -Is. 9. -Pp. 2173-2186. DOI: 10.1177/1077546316636282.

2. Iqbal M. K. New Cubic B-spline Approximation for solving Non-linear Singular Boundary Value Problems Arising in Physiology / M. K. Iqbal, M. Abbas, N. Khalid //Communications in Mathematics and Applications. - 2018. -Vol. 9. -№ 3. -Pp. 377-392. DOI: 10.26713/cma.v9i3.802.

3. Попов А. И. Применение финитных базисных сплайнов при восстановлении сигналов электрогастроэнтерографии / А. И. Попов, С. Ф. Свиньин // Труды СПИИРАН. - 2017. - № 1(50). - C. 93-111. DOI: 10.15622/sp.50.4.

4. Tok Onarcan A. Trigonometric cubic B-spline collocation algorithm for numerical solution reaction - diffusion equation systems / A. Tok Onarcan, N. Adar, I. Dag // Journal of Computational and Applied Mathematics. - 2018. - Vol. 37. -Is. 5.-Pp. 6848-6869. DOI: 10.1007/s40314-018-0713-4.

5. Kvasov B. I. Methods of Shape-Preserving Spline Approximation. - Singapore: World Scientific Publishing Co. Pte. Ltd., 2000. - 338 p.

6. Ююкин И. В. Модификация метода наименьших квадратов для сплайн-аппроксимации навигационной изоповерхности / И. В. Ююкин // Вестник Государственного университета морского и речного флота имени адмирала С. О. Макарова. - 2019. - Т. 11. - № 4. - С. 631-639. DOI: 10.21821/2309-5180-2019-11-4-631-639.

7. Гагарский Д. А. Электронные картографичесские системы в современном судовождении. - СПб.: ГМА им. адм. С. О. Макарова, 2007. - 124 с.

8. Kvasov B. I. Approximation by Lagrange splines / B. I. Kvasov, A. Luadsong // Proceedings of the Fourth Annual National Symposium on Computational Science and Engineering. - Bangkok: Kasetsart University, 2000. - Pp. 303-315.

9. Богданов В. В. Условияформосохранения при интерполяции кубическими сплайнами / В. В. Богданов, Ю. С. Волков // Математические труды. - 2019. - T. 22. - № 1. - C. 19-67. DOI: 10.33048/mattrudy.2019.22.102.

10. Ююкин И. В. Оптимизация моделирования навигационной изоповерхности методами базисных финитных сплайнов / И. В. Ююкин // Вестник Государственного университета морского и речного флота имени адмирала С. О. Макарова. - 2019. - Т. 11. - № 2. - С. 266-274. DOI: 10.21821/2309-5180-2019-11-2-266-274.

11. Dem’yanovich Yu. K. Realization of the spline-wavelet decomposition of the first order / Yu. K. Dem’yanovich, A. S. Ponomarev // Journal of Mathematical Sciences. - 2017. -Vol. 224. - Is. 6.-Pp. 833-860. DOI: 10.1007/s10958-017-3454-9.

12. Ююкин И. В. Сплайн-интерполяция навигационных изолиний / И. В. Ююкин // Вестник Государственного университета морского и речного флота имени адмирала С. О. Макарова. - 2019. - Т. 11. - № 6. - С. 1026-1036. DOI: 10.21821/2309-5180-2019-11-6-1026-1036.

13. Dem’yanovich Yu. K. Adaptive Wavelet Decomposition of Matrix Flows / Yu. K. Dem’yanovich, V. G. Degtyarev, N. A. Lebedinskaya // Journal of Mathematical Sciences. - 2018. - Vol. 232. -Is. 6. - Pp. 816-829. DOI: 10.1007/s10958-018-3911-0.

14. Dem’yanovich Yu. K. Two-sided estimates of some coordinate splines / Yu. K. Dem’yanovich, D. M. Lebedinskii, N. A. Lebedinskaya // Journal of Mathematical Sciences. - 2016. - Vol. 216. - Is. 6. - Pp. 770-782. DOI: 10.1007/s10958-016-2941-8.

15. Khalid N. A numerical algorithm based on modified extended B-spline functions for solving time-fractional diffusion wave equation involving reaction and damping terms / N. Khalid, M. Abbas, M. K. Iqbal, D. Baleanu // Advances in Difference Equations. - 2019. -Vol. 2019. - Is. 1. -Pp. 378. DOI: 10.1186/s13662-019-2318-7.

16. Makarov A. A. On two algorithms of wavelet decomposition for spaces of linear splines/ A.A Makarov // Journal of Mathematical Sciences. - 2018. - Vol. 232. - Is. 6.-Pp. 926-937. DOI: 10.1007/s10958-018-3920-z.

17. Makarov A. A. On functionals dual to minimal splines/ A.A Makarov // Journal of Mathematical Sciences. - 2017. -Vol. 224. -Is. 6. - Pp. 942-955. DOI: 10.1007/s10958-017-3464-7.

18. Ююкин И. В. Алгоритмизация навигационных задач на основе методов кусочных аппроксимаций: автореф. дис. … канд. техн. наук / И. В. Ююкин. - Л., 1991. - 22 с.


Review

For citations:


Yuyukin I.V. INTERPOLATION OF THE NAVIGATIONAL FUNCTION BY THE LAGRANGE TYPE SPLINE. Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova. 2020;12(1):57-70. (In Russ.) https://doi.org/10.21821/2309-5180-2020-12-1-57-70

Views: 230


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2309-5180 (Print)
ISSN 2500-0551 (Online)