Preview

Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova

Advanced search

BIDIRECTIONAL POWER CONVERTER SYSTEM IMPLEMENTATION IN LIMITED POWER GRID

https://doi.org/10.21821/2309-5180-2020-12-4-812-823

Abstract

Simulation analysis of bidirectional power converters system for charging station of electric vehicle in condition of limited power source in city infrastructure is considered in the paper. Electric vehicles can be automobiles, trucks or vessels with electric propulsion system. Power limitations may be caused by obsolescence of the electrical infrastructure, as well as the historical, architectural, or economic features of city or its districts infrastructure. To use charging stations matching the latest standards without global upgrade of infrastructure, these limitations need to be overcome, which is possible with external energy storage units delivered to the charging station. In general case, the energy from energy storage units can be used both to maximize load capacity and to transfer power to the AC power grid. The function of balancing power consumption between the grid and external energy storage units is connected to the system of bidirectional power converters, which consists of a three-phase dual active bridge converter on the side of energy storage units and an active front-end on the side of AC grid; both converters are working on the common DC link. To implement such a system, galvanic insulation between the converter terminals and the external energy storage units is required, which is provided by the presence of a high-frequency power transformer in a three-phase dual active bridge converter. The three-phase dual active bridge converter is controlled by a phase modulation algorithm with a single-phase shift (single-phase switching). The active front-end is controlled by a space vector modulation algorithm. System modes involve transferring energy from the AC grid to the DC link through the active front-end, transferring energy from the external energy storage units to the DC link through a three-phase dual active bridge converter, joint transmission of energy from the grid and external storage units to the common DC link and transfer energy from the energy storage units to the grid. The simulation study and analysis have confirmed the workability of the proposed bidirectional power converter system and revealed the specifics of working in the joint transmission of energy by converters to a common DC link, requiring the introduction of additional cross-feedback between converters.

About the Authors

K. A. Vorobev
ITMO University
Russian Federation


N. A. Poliakov
ITMO University
Russian Federation


R. Strzelecki
Gdańsk University of Technology
Russian Federation


References

1. SMART ELECTRIC URBAN LOGISTICS [Электронный ресурс]. - Режим доступа: https://crossriverpartnership.org/projects/smart-electric-urban-logistics/ (дата обращения: 01.07.2020).

2. Karimi S. Evaluation of Energy Transfer Efficiency for Shore-to-Ship Fast Charging Systems / S. Karimi, M. Zadeh, J. A. Suul // 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE). - IEEE, 2020. - Pp. 1271-1277. DOI: 10.1109/ISIE45063.2020.9152219.

3. Poliakov N. Three Phase Dual Active Bridge Power Converter Implementation in Power Supply System of Telescope Rotary Support Device / N. Poliakov, K. Vorobev // 2019 IEEE 60th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON). - IEEE, 2019. - Pp. 1-5. DOI: 10.1109/RTUCON48111.2019.8982360.

4. Zhao Z. Bus Voltage Control Strategy for Low Voltage DC Microgrid Based on AC Power Grid and Battery / Z. Zhao, J. Hu, H. Chen // 2017 IEEE International Conference on Energy Internet (ICEI). - IEEE, 2017. - Pp. 349-354. DOI: 10.1109/ICEI.2017.68.

5. Baek S. Isolation Transformer for 3-Port 3-Phase Dual-Active Bridge Converters in Medium Voltage Level / S. Baek, S. Bhattacharya // IEEE Access. - 2019. - Vol. 7. - Pp. 19678-19687. DOI: 10.1109/ ACCESS.2019.2895818.

6. De Doncker R. W. A. A. A three-phase soft-switched high-power-density DC/DC converter for high-power applications / R. W. A. A. De Doncker, D. M. Divan, M. H. Kheraluwala // IEEE transactions on industry applications. - 1991. - Vol. 27. - Is. 1. - Pp. 63-73. DOI: 10.1109/28.67533.

7. Walter J. High-power galvanically isolated DC/DC converter topology for future automobiles / J. Walter, R.W. De Doncker // IEEE 34th Annual Conference on Power Electronics Specialist. - IEEE, 2003. - Vol. 1. - Pp. 27-32. DOI: 10.1109/PESC.2003.1218269.

8. Yazdani F. Analysis of a three-phase dual active bridge converter during the deadband / F. Yazdani, S. Haghbin, T. Thiringer, M. Zolghadri // 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe). - IEEE, 2017. - Pp. 1-6. DOI: 10.1109/EEEIC.2017.7977811.

9. Albatran S. Hybrid 2D-3D Space Vector Modulation Voltage Control Algorithm for Three Phase Inverters / S. Albatran, Y. Fu, A. Albanna, R. Schrader, M. Mazzola // IEEE Transactions on Sustainable Energy. - 2013. - Vol. 4. - Is. 3. - Pp. 734-744. DOI: 10.1109/TSTE.2013.2245689.

10. Albatran S. A hybrid 2D-3D SVM control algorithm for three phase voltage source inverters / S. Albatran, Y. Fu, A. Albanna // 2012 IEEE Power Electronics and Machines in Wind Applications. - IEEE, 2012. - Pp. 1-6. DOI: 10.1109/PEMWA.2012.6316357.

11. Neacsu D.O. Switching Power Converters: Medium and High Power / D. O. Neacsu. - Second Edition. - New York: CRC Press, 2014. - 592 p.

12. Jimichi T. Comparison of single-phase and three-phase dual-active bridge DC-DC converters with various semiconductor devices for offshore wind turbines / T. Jimichi, M. Kaymak, R. W. De Doncker // 2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017 - ECCE Asia). - IEEE, 2017. - Pp. 591-596. DOI: 10.1109/IFEEC.2017.7992105.

13. Segaran D. Comparative analysis of single-and Three-Phase Dual Active Bridge Bidirectional DC-DC Converters / D. Segaran, D. G. Holmes, B. P. McGrath // Australian Journal of Electrical and Electronics Engineering. - 2009. - Vol. 6. - Is. 3. - Pp. 329-337. DOI: 10.1080/1448837X.2009.11464251.

14. Van Hoek H. Comparison of a single-phase and a three-phase dual active bridge with low-voltage, high-current output / H. van Hoek, M. Neubert, A. Kroeber, and R. W. De Doncker // 2012 International Conference on Renewable Energy Research and Applications (ICRERA). - IEEE, 2012. - Pp. 1-6. DOI: 10.1109/ICRERA.2012.6477466.

15. Inoue S. A Bidirectional Isolated DC-DC Converter as a Core Circuit of the Next-Generation Medium-Voltage Power Conversion System / S. Inoue, H. Akagi // IEEE Transactions on Power Electronics. - IEEE, 2007. - Vol. 22. - Is. 2. - Pp. 535-542. DOI: 10.1109/TPEL.2006.889939.

16. Inoue S. A Bidirectional DC-DC Converter for an Energy Storage System With Galvanic Isolation / S. Inoue, H. Akagi // IEEE Transactions Power Electron. - 2007. - Vol. 22. - Is. 6. -Pp. 2299-2306. DOI: 10.1109/TPEL.2007.909248.

17. Núñez R. O. A comparative study of Three-Phase Dual Active Bridge Converters for renewable energy applications / R. O. Núñez, G. G. Oggier, F. Botterón, G. O. García // Sustainable Energy Technologies and Assessments. - 2017. - Vol. 23. - Pp. 1-10. DOI: 10.1016/j.seta.2017.07.004.

18. Zhao B. Overview of Dual-Active-Bridge Isolated Bidirectional DC-DC Converter for High-Frequency-Link Power-Conversion System / B. Zhao, Q. Song, W. Liu, Y. Sun // IEEE Transactions on power electronics. - 2013. - Vol. 29. - Is. 8. - Pp. 4091-4106. DOI: 10.1109/TPEL.2013.2289913.

19. Choi H. A Novel Switching Algorithm to improve Efficiency at light load conditions for Three-Phase DAB Converter in LVDC Application / H. Choi, S. Jung, J. Jung // 2018 International Power Electronics Conference (IPEC-Niigata 2018 - ECCE Asia). - IEEE, 2018. - Pp. 383-387. DOI: 10.23919/IPEC.2018.8507840.

20. Prasad A. R. A three-phase resonant PWM DC-DC converter / A.R. Prasad, P.D. Ziogas, S. Manias // PESC ‘91 Record 22nd Annual IEEE Power Electronics Specialists Conference. - IEEE, 1991. - Pp. 463-473. DOI: 10.1109/PESC.1991.162716.

21. Albatran S. Comparative harmonic analysis of hybrid 2D-3D SVM and conventional 2D SVM / S. Albatran, Y. Fu, A. Albanna // 2013 IEEE 14th Workshop on Control and Modeling for Power Electronics (COMPEL). - IEEE, 2013. - Pp. 1-7. DOI: 10.1109/COMPEL.2013.6626441.

22. Albatran S. Switching function notation for hybrid 2D-3D space vector modulation / S. Albatran, Y. Fu, Albanna // 2013 4th IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG). - IEEE, 2013. - Pp. 1-7. DOI: 10.1109/PEDG.2013.6785636.


Review

For citations:


Vorobev K.A., Poliakov N.A., Strzelecki R. BIDIRECTIONAL POWER CONVERTER SYSTEM IMPLEMENTATION IN LIMITED POWER GRID. Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova. 2020;12(4):812-823. (In Russ.) https://doi.org/10.21821/2309-5180-2020-12-4-812-823

Views: 209


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2309-5180 (Print)
ISSN 2500-0551 (Online)