Preview

Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova

Advanced search

SCHEMATIC SOLUTIONS FOR SHIP UNIFIED ELECTRIC POWER SYSTEMS BASED ON VALVE GENERATORS AND STATIC ELECTRIC POWER SOURCES

https://doi.org/10.21821/2309-5180-2020-12-4-801-811

Abstract

The generator sets based on electric machines that are usually used as the main power sources on sea-going ships, operating at a constant rotation speed: diesel generators, gas turbine generators, steam turbine generators, are discussed in the paper. It is noted that in the past ten years there has been a need to develop and create new highly efficient sources of electricity that can be used on ships as part of unified electric power systems. These sources include static electric power sources of a new generation: accumulator batteries on a new element base; supercapacitors; fuel cells; solar batteries. It is emphasized that the introduction of new types of power sources leads to necessity to switch to new principles of building unified ship power systems. For this, it is necessary to develop standard circuit solutions taking into account the peculiarities of physical processes in static sources and the requirements for coordinating the parameters of electric power with the ship network. There is a need to formulate and introduce the relevant terms and definitions into the ship regulatory and technical documents. The structural and functional diagrams of the ship power sources types: traditional generator sets, valve generator sets, valve static electric power sources, are shown in the paper. Their principles of operation, features of physical processes, advantages and disadvantages are considered. General typical schematic solutions for unified electric power systems based on valve static electric power sources and valve generator sets are shown. Valve static sources can be used in unified electric power systems with AC and DC distribution both as the main and as a backup power source. It is concluded that the greatest technical and operational effects from the use of valve static sources can be achieved in unified electric power systems with DC power distribution. New terms and definitions have been proposed for inclusion in ship regulatory and technical documents.

About the Authors

A. V. Grigoryev
Admiral Makarov State University of Maritime and Inland Shipping; Saint Petersburg Electrotechnical University
Russian Federation


R. R. Zaynullin
JSC “RPC “Ship electric propulsion”
Russian Federation


S. M. Malyshev
Saint Petersburg Electrotechnical University; JSC “RPC “Ship electric propulsion”
Russian Federation


References

1. Устинова З. С. Перспективы создания гражданских судов с атомными энергетическими установками / З. С. Устинова, С. А. Устинов // Труды Крыловского государственного научного центра. - 2020. - № 2 (392). - С. 89-96. DOI: 10.24937/2542-2324-2020-2-392-89-96.

2. Фатыхов Р. Р. Перспективы применения литий-ионных аккумуляторов в качестве резервных источников питания на электрических станциях / Р. Р. Фатыхов, С. М. Хантимеров, Н. М. Сулейманов // Вестник Казанского государственного энергетического университета. - 2017. - № 4 (36). - С. 45-53.

3. Деньщиков К. К. Суперконденсаторы в современной энергетике / К. К. Деньщиков, А. З. Жук, А. Ф. Герасимов, М. В. Голиков // Известия российской академии наук. Энергетика. - 2011. - № 5. - С. 125-131.

4. Chen Y. Model-based techno-economic evaluation of fuel cell vehicles considering technology uncertainties / Y. Chen, M. Melaina // Transportation Research Part D: Transport and Environment. - 2019. - Vol. 74. - Pp. 234-244. DOI: 10.1016/j.trd.2019.08.002.

5. Meskani A. Modeling and simulation of an intelligent hybrid energy source based on solar energy and battery / A. Meskani, A. Haddi // Energy Procedia. - 2019. - Vol. 162. - Pp. 97-106. DOI: 10.1016/j.egypro.2019.04.011.

6. Григорьев А. В. Перспективы применения статических источников электроэнергии на судах с системами электродвижения / А. В. Григорьев, Р. Р. Зайнуллин, С. М. Малышев // Вестник Государственного университета морского и речного флота имени адмирала С. О. Макарова. - 2020. - Т. 12. - № 1. - С. 202- 213. DOI: 10.21821/2309-5180-2020-12-1-202-213.

7. Романовский В. В. Перспективы развития систем электродвижения / В. В. Романовский, Б. В. Никифоров, А. М. Макаров // Вестник Государственного университета морского и речного флота имени адмирала С. О. Макарова. - 2018. - Т. 10 - № 3. - С. 586-596. DOI: 10.21821/2309-5180-2018-10-3-586-596.

8. Хватов О. С. Судовая пропульсивная гибридная установка / О. С. Хватов, И. А. Тарпанов // Вестник Волжской государственной академии водного транспорта. - 2013. - № 35. - С. 337-340.

9. Capasso C. Design of a Hybrid Propulsion Architecture for Midsize Boats / C. Capasso, E. Notti, O. Veneri // Energy Procedia. - 2019. - Vol. 158. - Pp. 2954-2959. DOI: 10.1016/j.egypro.2019.01.958.

10. Geertsma R. D. Design and control of hybrid power and propulsion systems for smart ships: A review of developments / R. D. Geertsma, R. R. Negenborn, K. Visser, J. J. Hopman // Applied Energy. - 2017. - Vol. 194. - Pp. 30-54. DOI: 10.1016/j.apenergy.2017.02.060.

11. Кузнецов С. Е. Основы технической эксплуатации судового электрооборудования и средств автоматизации / С. Е. Кузнецов. - СПб.: ГУМРФ имени адмирала С. О. Макарова, 2015. - 584 с.


Review

For citations:


Grigoryev A.V., Zaynullin R.R., Malyshev S.M. SCHEMATIC SOLUTIONS FOR SHIP UNIFIED ELECTRIC POWER SYSTEMS BASED ON VALVE GENERATORS AND STATIC ELECTRIC POWER SOURCES. Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova. 2020;12(4):801-811. (In Russ.) https://doi.org/10.21821/2309-5180-2020-12-4-801-811

Views: 203


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2309-5180 (Print)
ISSN 2500-0551 (Online)