Integration of spline function methods and fuzzy logic for solving complex navigation problems
https://doi.org/10.21821/2309-5180-2025-17-5-653-671
EDN: EGJBTH
Abstract
This paper explores the possibility of integrating fuzzy set theory with modified piecewise approximations into a unified framework for developing advanced navigation models. The optimal combination of fuzzy logic and spline functions makes it possible to account for uncertainty and inaccuracy in navigation measurements through the application of point interpolation principles. The theoretical basis of the study relies on the fuzzy approximation theorem, which states that any system can be synthesized using fuzzy logic. A practical example is provided, demonstrating the use of fuzzy sets in spline-based trajectory modeling to ensure timely avoidance of restricted navigation areas and to determine optimal trajectory parameters under routing uncertainty. An experiment was conducted to synthesize a complex spline trajectory of a vessel using linguistic variables within fuzzy logic theory. The feasibility of combining spline function methods and fuzzy set compositions was empirically confirmed through the approximation of a smooth trajectory, which increased the speed of soft computing by 15 %. The proposed hybrid approach can serve as a mathematical foundation for adaptive fuzzy models designed to predict the trajectories of mobile objects, contributing to the development of unmanned navigation concepts. A paradigm shift is anticipated — from traditional requirements for measurement accuracy based on probabilistic and statistical methods to the fuzzy domain of information granulation. The paper also examines the alternative applicability of fuzzy logic versus probability theory when using membership functions to address non-standard navigation problems. Furthermore, the study investigates the modeling of a watch officer’s decision-making process based on fuzzy logic principles, emphasizing the influence of the human factor on navigational safety in intelligent hybrid systems. Managing uncertainty in cognitive navigation tasks is viewed as a key aspect of preventing emergencies through the application of fuzzy logic algebra.
About the Author
I. V. YuyukinRussian Federation
Igor V. Yuyukin — PhD, associate professor Admiral Makarov State University of Maritime and Inland Shipping.
5/7 Dvinskaya Str., St. Petersburg, 198035
References
1. Grischenko, A. A. Metody podderzhki prinyatiya resheniy pri poiske i soprovozhdenii podvizhnykh ob”ektov na more. PhD diss. Novorossiysk, 2021.
2. Zhmur, A. A. and V. A. Loginovskiy. “Using a situation awareness theory in a study of grounding incident investigations.” Vestnik gosudarstvennogo universiteta morskogo i rechnogo flota im. admirala S. O. Makarova 10.6 (2018): 1200–1210. DOI: 10.21821/2309-5180-2018-10-6-1200-1210.
3. Yuyukin, I. V. “Cybernetic security of alternative offline navigation from the standpoint of spline technology.” Vestnik gosudarstvennogo universiteta morskogo i rechnogo flota im. admirala S. O. Makarova 14.3 (2022): 346–364. DOI: 10.21821/2309-5180-2022-14-3-346-364.
4. Zadeh, L. A. “Is there a need for fuzzy logic?” Information Sciences 178.13 (2008): 2751–2779. DOI: 10.1016/j.ins.2008.02.012.
5. Yuyukin, I. V. “Generalization of the underwater relief image using the spline approximation method on a vector electronic chart.” Vestnik gosudarstvennogo universiteta morskogo i rechnogo flota im. admirala S. O. Makarova 16.6 (2024): 910–934. DOI: 10.21821/2309-5180-2024-16-6-910-934.
6. Guilbert, E. and H. Lin. “Isobathymetric Line Simplification with Conflict Removal Based on a B-spline Snake Model.” Marine Geodesy 30.1–2 (2007): 169–195. DOI: 10.1080/01490410701296697.
7. Mardanov М. J. and R. R. Rzayev. “L. A. Zadeh’s “Fuzzy logic” as a key to the description of humanistic systems.” Problems of information society 12.2 (2021): 26–37. DOI: 10.25045/jpis.v12.i2.02.
8. Yuyukin, I. V. “Configuring a complex of splines when approximating the navigational isoline with linear piecewise functionals.” Vestnik gosudarstvennogo universiteta morskogo i rechnogo flota im. admirala S. O. Makarova 17.3 (2025): 365–383. DOI: 10.21821/2309-5180-2025-17-3-365-383.
9. Yuyukin, I. V. “Spline interpolation of navigational isolines.” Vestnik gosudarstvennogo universiteta morskogo i rechnogo flota im. admirala S. O. Makarova 11.6 (2019): 1026–1036. DOI: 10.21821/2309-5180-2019-11-6-1026-1036.
10. Aliev, M. I., E. A. Isaeva and I. M. Aliev. “Probability theory and fuzzy sets theory of l. zadeh: the difference and the similarity.” Artificial Intelligence And Decision Making 3 (2012): 19–25.
11. Zadeh, L. A. “What Is the Relationship Between Probability Theory and Fuzzy Set Theory?” International Encyclopedia of Statistical ScienceSpringer Berlin Heidelberg, 2025: 2893–2896. DOI: 10.1007/978-3-662-69359-9_749.
12. Zadeh, L. A. “Fuzzy sets as a basis for a theory of possibility.” Fuzzy Sets and Systems 1.1 (1978): 3–28. DOI: 10.1016/0165-0114(78)90029-5.
13. Isayeva, E. A. “Comparison of theories of probability and L. Zadeh’s fuzzy sets devices.” Azerbaijan Journal of Physics Fizika C. (2024): 67–71. DOI: 10.70784/azip.3.2024C67.
14. Aliyev, M. I., E. A. Isayeva and I. M. Aliyev. “Random and fuzzy magnitudes as some kind of measuring devices.” Proceeding of ICAFS-2010 (Ninth International conference on Application of Fuzzy System and Soft Computing). Prague, 2010: 275–277.
15. Isayeva, E. A. “The role of fluctuations in artificial intelligence from Zadeh’s fuzzy sets point of view.” IFAC-PapersOnLine 51.30 (2018): 812–815. DOI: 10.1016/j.ifacol.2018.11.189.
16. Chen, L.-H. and C.-J. Chang. “Approaches for measurement system analysis considering randomness and fuzziness.” International Journal of Fuzzy System Applications 9.2 (2020): 98–131. DOI: 10.4018/ijfsa.2020040105.
17. Yuyukin, Igor V. “Realization of the smoothness of spline trajectory configuration for avoidance of no-go areas in due time.” Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova 16.3 (2024): 421–443. DOI: 10.21821/2309-5180-2024-16-3-421-443.
18. Zadeh, L. A. “Fuzzy languages and their relation to human intelligence.” Proceedings of the International Conference Man and Computer. France, Bordeaux, 1972.
19. Grinyak, V. M. and A. S. Devyatisil’nyy. “Fuzzy collision avoidance system for ships .” Journal Of Computer and Systems Sciences International 2 (2016): 93. DOI: 10.7868/S0002338816010078.
20. Grinyak, V. M., A. S. Devyatisil’nyy and A. V. Shulenina. “Assessment of marine traffic safety in aquatories as a metric of impact on navigators.” Transport: Science, Equipment, Management. Scientific Information Collection 12 (2019): 35–40. DOI: 10.36535/0236-1914-2019-12-5.
21. Loginovsky, Vladimir А. Primenenie preobrazovaniay podobiya dlya analiza i obrabotki navigatsionnoy informatsii. Abstract of Grand PhD Diss. SPb, 1991.
22. Klimenko V. D. Razrabotka metodov kolishestvennogo usheta vliyaniya shelovesheskogo faktora na bezopasnost’ sudna. PhD diss. SPb, 2003.
23. Kosko, B. “Fuzzy systems as universal approximators.” IEEE Transactions on Computers 43.11 (1994): 1329–1333. DOI: 10.1109/12.324566.
24. Zadeh, Lotfi A. A Theory of Approximate Reasoning (Machine Intellgence). New York: Halstead Press, 1979.
25. Bellman, R. E. and L. A. Zadeh. “Decision-Making in a Fuzzy Environment.” Management Science 17.4 (1970): B-141-B-164. DOI: 10.1287/mnsc.17.4.B141.
26. Zadeh, L. A. “Outline of a New Approach to the Analysis of Complex Systems and Decision Processes.” IEEE Transactions on Systems, Man, and Cybernetics SMC-3.1 (1973): 28–44. DOI: 10.1109/TSMC.1973.5408575.
27. Zadeh, L. A. “The roles of fuzzy logic and soft computing in the conception, design and deployment of intelligent systems.” Software Agents and Soft Computing Towards Enhancing Machine Intelligence: Concepts and Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997: 181–190. DOI: 10.1007/3-540-62560-7_45.
28. Zadeh, L. A. Computing with words: Principal concepts and ideas (Studies in Fuzziness and Soft Computing, Vol. 277). Berlin: Springer, 2012. DOI:10.1007/978-3-642-27473-2.
29. Imamguluyev, R. “Integrating Fuzzy Logic with Deep Learning: A New Approach to Explainable Artificial Intelligence.” 2025 6th International Conference on Mobile Computing and Sustainable Informatics (ICMCSI) — 2025: 1701–1706. DOI: 10.1109/ICMCSI64620.2025.10883618.
Review
For citations:
Yuyukin I.V. Integration of spline function methods and fuzzy logic for solving complex navigation problems. Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova. 2025;17(5):653-671. (In Russ.) https://doi.org/10.21821/2309-5180-2025-17-5-653-671. EDN: EGJBTH





















