Preview

Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova

Advanced search

Prospects for the use of electric cylinders in lifting and transport equipment

https://doi.org/10.21821/2309-5180-2025-17-5-629-640

EDN: CCXMJX

Abstract

Based on an analysis of scientific publications, this review article substantiates the need to implement effective technologies aimed at reducing greenhouse gas emissions, primarily carbon dioxide, which have a detrimental impact on global climate change. Particular attention is given to the negative environmental effects of lifting and transport equipment and terminal tractors used at large terminals. It is noted that, in this context, terminal operators are increasingly adopting hybrid engines, environmentally friendly fuels, or electrically powered equipment. Evidence is presented that the transition to lifting and transport equipment powered by electric energy sources can not only reduce greenhouse gas emissions during port operations but, due to the simpler mechanical design of electric drives, also improve equipment uptime and lower maintenance costs. In addition to replacing internal combustion engines, it is necessary to modernize hydraulic systems — particularly in reach stackers, which are among the most complex types of handling equipment (the hydraulic systems of reach stackers contain approximately 800 liters of hydraulic fluid). It is proposed to replace hydraulic cylinders, which are the main consumers of hydraulic energy during cargo handling operations, with electric cylinders. These components are comparable in operational loads to hydraulic cylinders; moreover, when internal combustion engines are replaced by battery systems, the total cost of ownership is reduced and positioning accuracy is improved.

About the Authors

I. V. Zub
Admiral Makarov State University of Maritime and Inland Shipping
Russian Federation

Igor V. Zub — PhD, associate professor Admiral Makarov State University of Maritime and Inland Shipping.

5/7 Dvinskaya Str., St. Petersburg, 198035



Yu. E. Ezhov
Admiral Makarov State University of Maritime and Inland Shipping
Russian Federation

Yurii E. Ezhov — PhD, associate professor Admiral Makarov State University of Maritime and Inland Shipping.

5/7 Dvinskaya Str., St. Petersburg, 198035



N. Yu. Bobyr
Admiral Makarov State University of Maritime and Inland Shipping
Russian Federation

Nikolaj Yu. Bobyr’ — engineer Admiral Makarov State University of Maritime and Inland Shipping.

5/7 Dvinskaya Str., St. Petersburg, 198035



References

1. Vasil’ev, V. K. “Prospects for the transition from diesel-powered reachstackers to the operation of electric versions.” Razvitie infrastruktury vnutrennego vodnogo transporta: traditsii, innovatsii (RIVVT-2023): Sbornik trudov mezhvuzovskoy nauchno-prakticheskoy konferentsii studentov, aspirantov i molodykh uchenykh, Sankt-Peterburg, 05 dekabrya 2023 goda. Sankt-Peterburg: Federal’noe gosudarstvennoe byudzhetnoe obrazovatel’noe uchrezhdenie vysshego obrazovaniya Gosudarstvennyy universitet morskogo i rechnogo flota im. admirala S. O. Makarova, 2024: 73–77.

2. Zeng, Y., X. Yuan and B. Hou. “Analysis of Carbon Emission Reduction at the Port of Integrated Logistics: The Port of Shanghai Case Study.” Sustainability 15.14 (2023). DOI: 10.3390/su151410914.

3. Karamguzhinova, A. E., V. N. Kuznetsova, V. V. Savinkin and D. A. Koptyaev. “Electrohydrocylinder of increased efficiency: prospects for the development of mechatronic systems.” The Russian Automobile And Highway Industry Journal 17.1(71) (2020): 22–31. DOI: 10.26518/2071-7296-2020-17-1-22-31.

4. Kozlov, A. V., A. V. Porsin and Yu. A. Dobrovol’skiy et al. “Life cycle assesment of powertrains based on a battery, hydrogen fuel cells, and internal combustion engine for urban buses under the conditions of moscow oblast.” Zhurnal Prikladnoi Khimii 94.6 (2021): 784–804. DOI: 10.31857/S004446182106013X.

5. Lanin, A. P., A. N. Novikov, A. V. Glukhov and R. R. Sadykov. “Opasnoe i vrednoe vozdeystvie nefti i nefteproduktov na okruzhayuschuyu sredu.” World Of Transport And Technological Machines 1(24) (2009): 98–106.

6. Arkhipenko, V. S. and V. A. Zhukova. “Sravnitel’nye kharakteristiki elektromekhanicheskikh i gidravlicheskikh tsilindrov.” Sovremennye problemy mashinostroeniya: Trudy XII Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii, Tomsk, 28 oktyabrya — 012019 goda Tomsk: Natsional’nyy issledovatel’skiy Tomskiy politekhnicheskiy universitet, 2019: 362–365.

7. Dunaev, V. I., I. M. Egorov and I. A. Tul’kova et al. “Determination of contact points of epicyclic roller drive threaded parts.” Science And Business: Ways Of Development 11(53) (2015): 15–22.

8. Lipchanskaya, Yu. G. “Elektrotsilindry — al’ternativa gidroprivodu.” Mezhdunarodnaya nauchno-tekhnicheskaya konferentsiya molodykh uchenykh BGTU im. V. G. Shukhova, posvyaschennaya 160-letiyu so dnya rozhdeniya V. G. Shukhova, Belgorod, 01–20 maya 2013 goda. Belgorod: shukhova, 2013: 1182–1187.

9. Nauparats, D. “Comparison of electric and hydraulic cylinders-application of motion drives for hydromechanical equipment on dams and navigation locks.” Gidrotekhnika 3(64) (2021): 11–14.

10. Nesmiyanov, I. A., M. E. Nikolaev, E. N. Zakharov and N. V. Kareva. “Prospects for the use of electric cylinders in loaders.” Sel’skiy mekhanizator 7 (2019): 28–29.

11. Ryakhovskiy, O. A., A. N. Vorob’ev and A. S. Marokhin. “An inverted planetary roller screw mechanism for converting rotary motion into linear.” Bmstu Journal Of Mechanical Engineering 9 (2013): 44–48.

12. Ivlev, V. I. “Comparative technical and economic characteristics of pneumatic and electric actuators.” Gidravlika 20 (2023): 21–35.

13. Izmaylov, A. Yu., A. F. Zhuk and V. A. Zhuk. “Elektromekhanicheskaya al’ternativa gidravlicheskomu i pnevmaticheskomu privodu.” Agricultural Machinery And Technologies 3 (2009): 9–13.

14. Zub, I. V., Yu. E. Ezhov and V. A. Sidorenko. “Modern requirements to the rules of technical operation of port handling equipment.” Vestnik gosudarstvennogo universiteta morskogo i rechnogo flota im. admirala S. O. Makarova 10.6 (2018): 1152–1161. DOI: 10.21821/2309-5180-2018-10-6-1152-1161.

15. Krupnov, P. A. and I. O. Ognev. “Research of application of alternative engines for port transshipment equipment.” Transport Business Of Russia 4 (2019): 114–117.

16. Petrova, M. V. and I. A. Vasil’ev. «Modernizatsiya sistemy avtomaticheskogo upravleniya elektrotsilindrami.» Vuzovskaya nauka v sovremennykh usloviyakh: sbornik materialov 57-y nauchno-tekhnicheskoy konferentsii, Ul’yanovsk, 23–28 yanvarya 2023 goda. Tom Chast’ 1. Ul’yanovsk: Ul’yanovskiy gosudarstvennyy tekhnicheskiy universitet, 2023: 157–159.

17. Gasho, E., S. Beloborodov and A. Nenashev. “Priorities of energy consumption in transport: electric traction or an increase in the ecological class of hydrocarbon fuels?” Energy Policy 1(192) (2024): 58–69. DOI: 10.46920/2409-5516_2024_1192_58.

18. Gadzhialieva, I. V., A. M. Lyubitskiy and M. V. Lyubitskiy et al. “Application of modern electric cylinders in the management of hydropower equipment.” Sciences Of Europe 69–1(69) (2021): 61–64. DOI: 10.24412/3162-2364-2021-69-1-61-64.

19. Gladyshev, G. “Zamena gidravliki na elektromekhaniku: zachem i kak eto delayut. Chast’ 1.” Control Engineering Rossiya 4(94) (2021): 40–44.

20. Gladyshev, G. “Zamena gidravliki na elektromekhaniku: zachem i kak eto delayut. Chast’ 2.” Control Engineering Rossiya 5(95) (2021): 36–40.

21. Maksimenko, A. N., E. V. Zarovchatskaya and S. V. Maslovskaya. “Determination of main output parameters for hydroficated construction and road-building machines at operational stage of their life cycle .” Science And Technique 5 (2014): 60–66.

22. Saushev, A. V. and A. A. Temkin. “Electric cylinder as a promising type of electromechanical drive of the main double-leaf gates of shipping locks in russia.” Vestnik gosudarstvennogo universiteta morskogo i rechnogo flota im. admirala S. O. Makarova 14.4 (2022): 628–637. DOI: 10.21821/2309-5180-2022-14-4-628-637.

23. Lee, S-U. and P. H. Chang. “Control of a heavy-duty robotic excavator using time delay control with integral sliding surface.” Control Engineering Practice 10.7 (2002): 697–711. DOI: 10.1016/S0967-0661(02)00027-8.

24. Mirza J. “Joint seals for hydraulic structures in severe climates.” Journal of Civil Engineering and Management 20.1 (2014): 38–46. DOI: 10.3846/13923730.2013.799092.

25. Rankka, A. and A. Dell’Amico. “Procedure of developing more energy efficient and electrified hydraulic systems for loader cranes.” Frontiers in Mechanical Engineering 10–2024 (2024). DOI: 10.3389/fmech.2024.1494642.

26. Romero-Abad, D. and R. Suárez-Córdova. “The electric potential of an infinite conducting cylinder with an n-cusped hypocycloidal cross-section.” European Journal of Physics 43.3 (2022): 035205. DOI: 10.1088/1361-6404/ac5e7e.

27. Zhou, J., Y. Lu, et al. “Analytical and experimental research on stability of large slenderness ratio horizontal hydraulic hoist.” Advances in Mechanical Engineering 10.10 (2018): 1687814018803472. DOI: 10.1177/1687814018803472.

28. Vinogradov, D. N., Ya. D. Vysotskiy, E. Yu. Miroshnik and E. I. Mal’tseva. “Main problems in hydraulic systems and their impact on equipment operation.” Sibirskaya derevnya: 70 let s nachala osvoeniya tselinnykh i zalezhnykh zemel’ v Rossii: Materialy mezhdunarodnoy nauchno-prakticheskoy konferentsii, posvyaschennoy 70-letiyu s nachala osvoeniya tselinnykh i zalezhnykh zemel’ v Rossii, Omsk, 06 iyunya 2024 goda. Omsk: Omskiy gosudarstvennyy agrarnyy universitet im. P. A. Stolypina, 2024: 488–491.

29. Gavryushenko, Ya. V. “Usloviya ekspluatatsii i tekhnicheskoe obsluzhivanie gidravlicheskikh sistem.” Aktual’nye aspekty razvitiya vozdushnogo transporta (Aviatrans-2019): Materialy mezhdunarodnoy nauchno-prakticheskoy konferentsii, priurochennoy k 50-letiyu so dnya osnovaniya Rostovskogo filiala MGTU GA. V 2-kh tomakh, Rostov-na-Donu, 21–23 iyunya 2019 goda. Tom 2. Rostov-na-Donu: Obschestvo s ogranichennoy otvetstvennost’yu «Fond nauki i obrazovaniya», 2019: 687–692.

30. Pakhomin, S. A., L. S. Pakhomin and A. A. Lazarev. “Electric drive of the steering mechanism.” Bulletin Of Higher Educational Institutions. North Caucasus Region. Technical Sciences 4(196) (2017): 53–56. DOI: 10.17213/0321-2653-2017-4-53-56.

31. Schemelev, V. L., I. V. Zub and Yu. E. Ezhov. “Automation of spreader operation in handling large size containers at ship’s list and trim.” Vestnik Of Astrakhan State Technical University. Series: Marine Engineering And Technologies 2 (2023): 101–107. DOI: 10.24143/2073-1574-2023-2-101-107.

32. Schemelev, V. L., I. V. Zub and Yu. E. Ezhov. “Spreader learning algorithm with the possibility of stabilization to improve the technology of container handling in conditions of roll and trim of the ship.” Transport Business Of Russia 4 (2023): 223–227. DOI: 10.52375/20728689_2023_4_223.


Review

For citations:


Zub I.V., Ezhov Yu.E., Bobyr N.Yu. Prospects for the use of electric cylinders in lifting and transport equipment. Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova. 2025;17(5):629-640. (In Russ.) https://doi.org/10.21821/2309-5180-2025-17-5-629-640. EDN: CCXMJX

Views: 101


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2309-5180 (Print)
ISSN 2500-0551 (Online)