Preview

Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova

Advanced search

NAVIGATIONAL USE OF THE E-LORAN SYSTEM IN MODIFICATION WITH THE SPLINE FUNCTIONS METHOD

https://doi.org/10.21821/2309-5180-2020-12-4-703-715

Abstract

The issue of navigational use of E-LORAN as an alternative to GPS is considered. It is noted that when using the spline algorithms, there is a real possibility to automate the accelerated handling of navigation information in the electronic LORAN project on the standard base of onboard computer resources. The proposed approach becomes especially important in case of blocking access to GPS for marine civilian users in local military conflicts or in case of technical problems such as spoofing attacks, satellite signal jamming, or hostile ship control. System protection of the marine consumer from unauthorized simulated interference with GPS signals is an actual problem of cybernetic security of the navigation in the future when assessing the hacker impact on the target task of safely following the planned route for any marine mobile object. Since LORAN/E-LORAN is hyperbolic navigation system, the task of interpolating the classical hyperbola is performed in order to demonstrate the productivity of the developed algorithms. On the basis of a specially organized calculated experiment, the high accuracy of synthesizing the navigation isoline is proved. A sequence of four screenshots demonstrates the reliability of the obtained results of algorithmic functionality. Repurposing the proposed approach to the differential navigation mode allows us to directly use the grid of distorted hyperboles in practical applications, while conceptually ignoring the complexity of mathematical formalization of fictitious isolines. A retrospective algorithm in software implementation based on the least squares method for calculating the most probable coordinates of the ship position as an iterative search for the intersection point of spline hyperbolic isolines with a geometric interpretation of the assigned task solution is used in the paper. When navigational using of E-LORAN in a modification with spline functions, it becomes possible to abandon specialized electronic or traditional paper charts with the hyperbolic family, applying spline algorithmic and onboard software in order to eliminate the navigator participation in traditional interpolation on a hyperbolic grid-chart in order to fix the vessel position. It is concluded that the specific considered aspect of the spline functions method can be a stimulating factor for automated accelerated processing of navigation information.

About the Author

I. V. Yuyukin
Admiral Makarov State University of Maritime and Inland Shipping
Russian Federation


References

1. Czaplewski K. Global Navigation Satellite Systems - Perspectives on Development and Threats to Safety of Sea Transportation / K. Czaplewski, D. Goward // TransNav: International Journal on Marine Navigation and Safety of Sea Transportation. - 2016. - Vol. 10. - Is. 2. - Pp. 183-192. DOI: 10.12716/1001.10.02.01.

2. Williams P. e-Navigation and the Case for eLoran / P. Williams, S. Basker, N. Ward // The Journal of Navigation. - 2008. - Vol. 61. - Is. 3. - Pp. 473-484. DOI: 10.1017/S0373463308004748.

3. Safar J. Analysis, Modeling, and Mitigation of Cross-Rate Interference in e-Loran: Analysis of Cross-Rate Interference in eLoran / J. Safar, P. Williams, A. Grant, F. Vejrazka // Navigation. - 2016. - Vol. 63. - Is. 3. - Pp. 295-319. DOI: 10.1002/navi.142.

4. Fang T. H. GPS and eLoran Integrated Navigation for Marine Applications Using Augmented Measurement Equation Based on Range Domain / T.H. Fang, Y. Kim, S.G. Park, K. Seo, S.H. Park // International Journal of Control Automation and Systems. - 2020. - Vol. 18. - Is. 9. - Pp. 2349-2359. DOI: 10.1007/s12555-019-0287-y.

5. Falco G. The Vacuum of Space Cybersecurity / G. Falco // 2018 AIAA SPACE and Astronautics Forum and Exposition. - American Institute of Aeronautics and Astronautics, Inc., 2018. - Pp. 5275-5279. DOI: 10.2514/6.2018-5275.

6. Czaplewski K. Does Poland Need eLoran? / K. Czaplewski // the 18th International Conference on Transport System Telematics. - Springer, Cham, 2018. - Pp. 525-544. DOI: 10.1007/978-3-319-97955-7_35.

7. Roth G. L. New Loran Capabilities Enhance Performance of Hybridized GPS/LORAN Receivers / G. L. Roth, P.W. Schick // Navigation. - 1999. - Vol. 46. - Is. 4. - Pp. 249-260. DOI: 10.1002/j.2161-4296.1999.tb02412.x.

8. Ююкин И. В. Сплайн-интерполяция навигационных изолиний / И. В. Ююкин // Вестник Государственного университета морского и речного флота имени адмирала С. О. Макарова. - 2019. - Т. 11. - № 6. - С. 1026-1036. DOI: 10.21821/2309-5180-2019-11-6-1026-1036.

9. Ююкин И. В. Оптимизация моделирования навигационной изоповерхности методами базисных финитных сплайнов / И. В. Ююкин // Вестник Государственного университета морского и речного флота имени адмирала С. О. Макарова. - 2019. - Т. 11. - № 2. - С. 266-274. DOI: 10.21821/2309-5180-2019-11-2- 266-274.

10. Loran-C User Handbook. - Washington: USCG, 1992. - 241 p.

11. Ююкин И. В. Аппроксимация геоида методами сплайн-функций / И. В. Ююкин // Вестник Государственного университета морского и речного флота имени адмирала С. О. Макарова. - 2020. - Т. 12. - № 2. - С. 262-271. DOI: 10.21821/2309-5180-2020-12-2-262-271.

12. Ююкин И. В. Модификация метода наименьших квадратов для сплайн-аппроксимации навигационной изоповерхности / И. В. Ююкин // Вестник Государственного университета морского и речного флота имени адмирала С. О. Макарова. - 2019. - Т. 11. - № 4. - С. 631-639. DOI: 10.21821/2309-5180-2019-11-4-631-639.

13. Ююкин И. В. Интерполяция навигационной функции сплайном лагранжева типа / И. В. Ююкин // Вестник Государственного университета морского и речного флота имени адмирала С. О. Макарова. - 2020. - Т. 12. - № 1. - С. 57-70. DOI: 10.21821/2309-5180-2020-12-1-57-70.

14. Song S. P. The Integrated eLoran/GPS Navigation Algorithm for Reduced Calculational Complexity and High Accuracy / S. P. Song, M. Y. Shin, S. B. Son, Y. B. Kim, S. J. Lee, C. S. Park // The Transactions of the Korean Institute of Electrical Engineers. - 2011. - Vol. 60. - Is. 3. - Pp. 612-619. DOI: 10.5370/KIEE.2011.60.3.612.

15. Czaplewski K. The Identification of Possible Applications of the E-Loran System / K. Czaplewski, A. Weintrit // Annual of Navigation. - 2018. - Vol. 25. - Is. 1. - Pp. 165-186. DOI: 10.1515/aon-2018-0012.

16. Psiaki M. Attackers can spoof navigation signals without our knowledge. Here’s how to fight back GPS lies / M. Psiaki, T. Humphreys, B. Stauffer // IEEE Spectrum. - 2016. - Vol. 53. - Is. 8. - Pp. 26-53. DOI: 10.1109/MSPEC.2016.7524168.

17. Fang T. H. Integrated GPS, INS, and eLoran for Maritime Tasks Using ASF Correction by Kalman Filter / T. H. Fang, Y. Kim, D. K. Kim, S. Lee, K.-Y. Seo, S.H. Park // Journal of Institute of Control, Robotics and Systems. - 2018. - Vol. 24. - Pp. 742-749. DOI: 10.5302/J.ICROS.2018.0079.

18. Son P. W. Preliminary study of the re-radiation effect of Loran signal to improve the positioning accuracy / P. W. Son, S. G. Park, K. Seo, S. Park, T. H. Fang // 2019 European Navigational Conference (ENC). - IEEE, 2019. - Pp. 1-4. DOI: 10.1109/EURONAV.2019.8714156.

19. Son P. W. Novel Multichain-Based Loran Positioning Algorithm for Resilient Navigation / P.W. Son, H. Rhee, J. Seo // IEEE Transactions on Aerospace and Electronic System. - 2017. - Vol. 54. - Is. 2. - Pp. 666-679. DOI: 10.1109/TAES.2017.2762438.

20. Mina T. Y. GPS spoofing detection for the power grid network using a multireceiver hierarchical framework architecture / T. Y. Mina, S. Bhamidipati, G. X. Gao // Navigation. - 2019. - Vol. 66. - Is 4. - Pp. 857-875. DOI: 10.1002/navi.341.

21. Falco G. Cybersecurity Principles for Space Systems / G. Falco // Journal of Aerospace Information Systems. - 2019. - Vol. 16. - Is. 2. - Pp. 61-70. DOI: 10.2514/1.I010693.

22. Czaplewski K. Improvement in accuracy of determining a vessel’s position with the use of neural networks ana robust m-estimation / K. Czaplewski, M. Waz // Polish Maritime Research. - 2017. - Vol. 24. - № 1. - Pp. 22-31. DOI: 10.1515/pomr-2017-0003.

23. Kerns A. J. Unmanned Aircraft Capture and Control Via GPS Spoofing / A.J. Kerns, D.P. Shepard, Bhatti, T.E. Humphreys // Journal of Field Robotics. - 2014. - Vol. 31. - Is. 4. - Pp. 617-636. DOI: 10.1002/rob.21513.

24. Psiaki M. L. GNSS spoofing and detection / M.L. Psiaki, T.E. Humphreys // Proceedings of the IEEE. - 2016. - Vol. 104. - Is. 6. - Pp. 1258-1270. DOI: 10.1109/JPROC.2016.2526658.

25. Liu Y. Impact Assessment of GNSS Spoofing Attacks on INS/GNSS Integrated Navigation System / Y. Liu, S. Li, Q. Fu, Z. Liu // Sensors. - 2018. - Vol. 18. - Is. 5. - Pp. 1433. DOI: 10.3390/s18051433.

26. Hu Y. Spoofing Detection Technique Using Fraction Parts of Double-difference Carrier phases / Y. Hu, S. Bian, B. Ji, J. Li // The Journal of Navigation. - 2018. - Vol. 71. - Is. 5. - Pp. 1111-1129. DOI: 10.1017/S0373463318000206.

27. Kugler L. Why GPS Spoofing is a Threat to Companies, Countries / L. Kugler // Communications of the ACM. - 2017. - Vol. 60. - No. 9. - Pp. 18-19. DOI: 10.1145/3121436.

28. Bhatti J. Hostile Control of Ships via False GPS Signals: Demonstration and Detection / J. Bhatti, T. E. Humphreys // Navigation. - 2017. - Vol. 64. - Is. 1. - Pp. 51-66. DOI: 10.1002/navi.183.

29. Borio D. A sum-of-squares approach to GNSS spoofing detection / D. Borio, C. Gioia // IEEE Transactions on Aerospace and Electronic System. - 2016. - Vol. 52. - Is. 4. - Pp. 1756-1768. DOI: 10.1109/TAES.2016.150148.


Review

For citations:


Yuyukin I.V. NAVIGATIONAL USE OF THE E-LORAN SYSTEM IN MODIFICATION WITH THE SPLINE FUNCTIONS METHOD. Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova. 2020;12(4):703-715. (In Russ.) https://doi.org/10.21821/2309-5180-2020-12-4-703-715

Views: 316


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2309-5180 (Print)
ISSN 2500-0551 (Online)