Preview

Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova

Advanced search

Configuring a complex of splines when approximating the navigational isoline with linear piecewise functionals

https://doi.org/10.21821/2309-5180-2025-17-3-365-383

EDN: GSETID

Abstract

This paper proposes to consider a linear spline as a mathematical criterion for a line of position. In this context, the linear spline approximation is viewed dually: the spline is associated both with an analog of the line of position and simultaneously with a multi-link of the reconstructed navigational isoline. The spline gradient is interpreted as an enhanced concept of the classical gradient vector, differing in its construction along the normal to the spline segment approximating the isoline near the dead reckoning point. This approach ensures the realism of the multifactorial nature of probable directions of maximum increases in the navigation function by operating with a complex of spline gradients, which objectively reflects the situation of extreme observation accuracy as the most likely point of intersection of spline lines of position. It is noted that the concept of a spline gradient is recognized as a fundamental predicate determining the potential for a ship’s movement during isolinear navigation, taking into account the changing geometric characteristics of the navigation parameter field. The estimation of navigation measurement accuracy is specified due to the variable configuration of the gradient complex’s architecture. It seems reasonable to assume the hypothetical possibility of independent control of a ship’s isolinear movement with special onboard equipment capable of continuously determining the values of the navigation isoline’s parameters with synchronous fixation of the gradient fan, since the internal geometry of the ship’s trajectory is fully characterized by navigation parameters in the generally accepted sense of navigation. It is pointed out that an alternative advantage of maintaining a vessel on an isoline navigation route is the technical ability to navigate by control signals derived from measurements of a complex of gradients without using additional information. The practical application of the gradient fan creates a precedent for organizing a parametric system in which the current true course and coordinates of an isolinearly moving vessel are functions of gradiometric measurements. The theoretical possibility of practical application of spline function theory to approximate the latest isolines is allowed, whose introduction into future navigation is associated with innovations in navigation technology. It is predicted that the proposed approach can also serve as mathematical support for an automated navigation system with artificial intelligence within the framework of unmanned navigation.

About the Author

I. V. Yuyukin
Admiral Makarov State University of Maritime and Inland Shipping
Russian Federation

Igor V. Yuyukin — PhD of Technical Sciences, associate professor Admiral Makarov State University of Maritime and Inland Shipping.

5/7 Dvinskaya Str., St. Petersburg, 198035



References

1. Sumner, Thomas Hubbard. A new and accurate method of finding a ship’s position at sea, by projection on Mercator’s chart: The principles of the method being fully explained and illustrated by problems, examples, and plates, with rules for practice, and examples from actual observation. Thomas Groom & Company of Boston, 1843.

2. Akimov, Mikhail A. “Drugoy priyem graficheskogo sposoba opredeleniya mesta na more.” Morskoy sbornik 2.3 (1849): 190–198.

3. Uttmark, Fritz E. Marc St. Hilary Method for Finding a Ship’s Position at Sea. New York, 1919.

4. Zhukhlin, Alexey M. Obrabotka navigatsionnoi informatsii v sistemakh obespecheniya bezopasnosti plavaniya s pozitsii teorii priblizheniya funktsii. Dr. Diss. L., 1984.

5. Deryabin, V. V. Algoritmizatsiya schisleniya puti sudna na osnove neyrosetevykh tekhnologiy. Grand PhD diss. Saint-Petersburg, 2020.

6. Mironenko, A. A. Metodologiya formalizatsii navigatsionnoy obstanovki, planirovaniya marshruta i programmnykh traektoriy dvizheniya sudna. Grand PhD diss. Novorossiysk, 2016.

7. Makarov, A.A. “On Two Algorithms of Wavelet Decomposition for Spaces of Linear Splines.” Journal of Mathematical Sciences 232.6 (2018): 926–937. DOI: 10.1007/s10958–018–3920-z.

8. Yuyukin, I. V. “Realization of the smoothness of spline trajectory configuration for avoidance of nogo areas in due time.” Vestnik gosudarstvennogo universiteta morskogo i rechnogo flota im. admirala S. O. Makarova 16.3 (2024): 421–443. DOI: 10.21821/2309-5180-2024-16-3-421-443.

9. Karetnikov, V.V., A. A. Butsanets, A. I. Zaytsev, and E. A. Ratner. “Gradient fill fairway plotting method for mapping inland waterways.” IOP Conference Series: Earth and Environmental Science 867.1 (2021): 012011. DOI: 10.1088/1755–1315/867/1/012011.

10. Guzevich, S.N. “Gradient is the main parameter navigation measurements.” Metrologiya 3 (2019): 46–55. DOI: 10.32446/0132-4713.2019-3-46-55.

11. Liu, Z., X. Wu, et al. “Gradient-Sensitive Optimization for Convolutional Neural Networks.” Computational Intelligence and Neuroscience 2021.1 (2021): 6671830. DOI: 10.1155/2021/6671830.

12. Vulfovich, Boris A. Osnovy obshey teorii navigatsionnyh izoliniy. Abstract of Dr. Diss. L., 1975.

13. Yuyukin, I. V. “Cubic splines synthesis of a distorted isoline in the aspect of using differential mode of satellite navigation.” Vestnik gosudarstvennogo universiteta morskogo i rechnogo flota im. admirala S. O. Makarova 13.3 (2021): 341–358. DOI: 10.21821/2309-5180-2021-13-3-341-358.

14. Yuyukin, I. V. “Generalization of the underwater relief image using the spline approximation method on a vector electronic chart.” Vestnik gosudarstvennogo universiteta morskogo i rechnogo flota im. admirala S. O. Makarova 16.6 (2024): 910–934. DOI: 10.21821/2309-5180-2024-16-6-910-934.

15. Volkov, Yu.S. and V. V. Bogdanov. “On error estimates of local approximation by splines.” Siberian Mathematical Journal 61.5 (2020): 1001–1008. DOI: 10.33048/smzh.2020.61.503.

16. Yuyukin, I. V. “Spline reconstruction of the informativeness template in correlation-extreme navigation tasks.” Vestnik gosudarstvennogo universiteta morskogo i rechnogo flota im. admirala S. O. Makarova 17.2 (2025): 233–253. DOI: 10.21821/2309-5180-2025-17-2-233-253.

17. Veeser, A. “Positivity Preserving Gradient Approximation with Linear Finite Elements.” Computational Methods in Applied Mathematics 19.2 (2019): 295–310. DOI: doi:10.1515/cmam-2018–0017.

18. Veeser, A. “De Boor–Fix functionals and Hermite boundary conditions in the polynomial spline interpolation problem.” Computational Methods in Applied Mathematics 19.2 (2019): 295–310. DOI: 10.1007/s40879-020-00406-z.

19. Guzevich, S.N. “The natural spatial number system.” Navigation And Hydrography 74 (2024): 40–55.

20. Guzevich, S.N. “Conditions for reliable measurements in space.” German International Journal Of Modern Science 19–1 (2021): 14–21. DOI: 10.24412/2701-8369-2021-19-1-14-22.

21. Yuyukin, I.V. “Spline interpolation of navigational isolines.” Vestnik gosudarstvennogo universiteta morskogo i rechnogo flota im. admirala S. O. Makarova 11.6 (2019): 1026–1036. DOI: 10.21821/2309-5180-2019-11-6-1026-1036.

22. Yuyukin, I.V. “Optimization of navigational isosurface simulation by the methods of basic finite splines.” Vestnik gosudarstvennogo universiteta morskogo i rechnogo flota im. admirala S. O. Makarova 11.2 (2019): 266–274. DOI: 10.21821/2309-5180-2019-11-2-266-274.

23. Vas’kov, A.S. and A. A. Mironenko. “Method for solving the isostage equations.” Vestnik gosudarstvennogo universiteta morskogo i rechnogo flota im. admirala S. O. Makarova 16.2 (2024): 212–223. DOI: 10.21821/2309-5180-2024-16-2-212-223.

24. Peshekhonov, V. G. “High-Precision Navigation Independently of Global Navigation Satellite Systems Data.” Gyroscopy and Navigation 13.1 (2022): 1–6.

25. Stepanov, O. A., Yu. A. Litvinenko, V. A. Vasil’ev and A. M. Isaev. “Map-Aided Navigation Taking into Account a Priori Information on the Object Trajectory.” 2023 30th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS)2023: 1–6. DOI: 10.23919/ICINS51816.2023.10168423.

26. Yuyukin, I. V. “Correlation-extreme method based on spline functions as an alternative to satellite navigation.” AIP Conference Proceedings 2476.1 (2023): 030030. DOI: 10.1063/5.0102916.

27. Volkovitskii, A. K., E. V. Karshakov, M. Y. Tkhorenko and B. V. Pavlov. “Application of Magnetic Gradiometers to Control Magnetic Field of a Moving Object.” Automation and Remote Control 81.2 (2020): 333–339.

28. Lee, J., J. H. Kwon and Yu. Myeongjong. “Performance Evaluation and Requirements Assessment for Gravity Gradient Referenced Navigation.” Sensors 15.7 (2015): 16833–16847. DOI: 10.3390/s150716833.

29. Gao, D., X. Lyu, et al. “An Aided Navigation Method Based on Strapdown Gravity Gradiometer.” Sensors 21.3 (2021). DOI: 10.3390/s21030829.

30. Li, T., B. Wang, Z. Deng and M. Fu. “Genetic Algorithm-Based Weighted Comprehensive Image Matching Algorithm for Underwater Gravity Gradient-Aided Navigation.” IEEE Journal of Oceanic Engineering 49.4 (2024): 1647–1656. DOI: 10.1109/JOE.2024.3379484.


Review

For citations:


Yuyukin I.V. Configuring a complex of splines when approximating the navigational isoline with linear piecewise functionals. Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova. 2025;17(3):365-383. (In Russ.) https://doi.org/10.21821/2309-5180-2025-17-3-365-383. EDN: GSETID

Views: 50


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2309-5180 (Print)
ISSN 2500-0551 (Online)