Compensation of the first reverse peak of the hydrodynamic force during filling of the lock chamber with a head supply system
https://doi.org/10.21821/2309-5180-2025-17-3-340-349
EDN: EOKVWY
Abstract
This paper presents research aimed at studying the hydraulics of the filling process of navigation locks with a head supply system feeding from beneath flat lifting and lowering gates. In particular, the problem of compensating the first reverse peak of the hydrodynamic force by varying the area of the filling opening is considered. The change in the filling opening area was analyzed both for cases of constant size and for cases of reduction. In a theoretical experiment, the timing and intensity of the change in the filling opening area were synchronized with the wave propagation speed in the lock chamber. The first release wave formed at the start of filling must be compensated by a second wave, which is forcibly created by reducing the cross-sectional area of the filling opening, followed by its increase. The parameters of the second compensating wave were determined so that its interaction with the first release wave eliminates the first peak of the reverse hydrodynamic force. The mode of changing the filling opening area was also studied. To achieve this, theoretical methods based on solving unsteady water motion equations were used, allowing determination of free surface fluctuations in the lock chamber, including at the initial filling stage. The results show, for various vessel displacements, the dependence of hydrodynamic force magnitude on the modes of filling opening area change and on the related increment of water flow. The findings can help create safe locking conditions for both current and future unmanned vessels.
About the Authors
K. P. MorgunovRussian Federation
Konstantin P. Morgunov — PhD of Technical Sciences, associate professor Admiral Makarov State University of Maritime and Inland Shipping.
5/7 Dvinskaya Str., St. Petersburg, 198035
V. G. Bogatyrev
Russian Federation
Vladislav G. Bogatyrev — PhD of Technical Sciences Admiral Makarov State University of Maritime and Inland Shipping.
5/7 Dvinskaya Str., St. Petersburg, 198035
References
1. Gapeev A. M. and V. V. Kononov. Sistemy pitaniya sudohodnyh shlyuzov vodoj. Sankt-Peterburg: Federal’noe gosudarstvennoe byudzhetnoe obrazovatel’noe uchrezhdenie vysshego obrazovaniya Gosudarstvennyy universitet morskogo i rechnogo flota im. admirala S. O. Makarova, 2013: 268.
2. Gapeev, A. M., V. V. Kononov and K. P. Morgunov. Gidravlicheskie raschety sudokhodnykh shlyuzov Sankt-Peterburg: Izdatel’stvo “Lan’”, 2020: 232.
3. Golovkov, S. A., P. A. Garibin and A. M. Gapeev. Raspredelenie vody v sudokhodnykh shlyuzakh Sankt-Peterburg: SPGUVK, 2009: 153.
4. Kuznetsov, S. S., N. M. Ksenofontov and A. A. Butsanets. “Overview of technical solutions for mooring devices on shipping locks.” Transport Business of Russia 4 (2024): 223–225.
5. Garibin, P. A. and A. V. Bogatov. “Renovation of water filling systems for the chambers of shipping locks № 1–6 of the volga-baltic waterway.” Vestnik gosudarstvennogo universiteta morskogo i rechnogo flota im. admirala S. O. Makarova 12.4 (2020): 640–653. DOI: 10.21821/2309–5180–2020–12–4–640–653.
6. Wu, L., X. Ji, et al. “An Intelligent Monitoring System for the Force Characteristics of Floating Bollards in a Ship Lock.” Journal of Marine Science and Engineering 11.10 (2023). DOI: 10.3390/jmse11101948.
7. Hao Q., Zhang J., Zhu X. and Liu J. “Responses of Large-ship Mooring Forces Based on Actual Measurement.” J. Ship Mech 25. (2021): 1685–1698. DOI:10.3969/j.issn.1007–7294.2021.12.009.
8. Liu M., Wang Z., Wu L., Li M., Yang J. “Safety monitoring method for mooring lines of floating bollards in ship lock.” PortWaterw. Eng 3. (2023): 85–91. DOI:10.16233/j.cnki.issn1002-4972.20230306.032.
9. Bogatyrev, V. G. “Prospects for operating a shipping lpck: how to moor unmanned vessels during locking.” Gidravlika i gidromekhanika gidrotekhnicheskikh sooruzheniy: Sbornik materialov nauchno-prakticheskoy konferentsii, posvyaschennoy 100-letiyu so dnya rozhdeniya Melkonyana Georgiya Ivanovicha, Sankt-Peterburg, 20 oktyabrya 2023 goda. Sankt-Peterburg: Gosudarstvennyy universitet morskogo i rechnogo flota im. admirala S. O. Makarova, 2023: 116–123.
10. Morgunov, K. P. “Ensuring the operation of navigation facilities in the organization of year-round navigation on the section of inland waterways in the direction of the caspian sea — azov.” Gidrotekhnika 2(67) (2022): 7–13. DOI: 10.55326/22278400_2022_2_7.
11. Bogatyrev V. G. “Osobennosti realizacii besshvartovnogo shlyuzovaniya pri ekspluatacii sudohodnogo shlyuza v usloviyah otricatel’nyh temperature.” Innovacionnye tekhnologii i konstrukcii v gidrotekhnicheskom, energeticheskom i vodnotransportnom stroitel’stve: Materialy 2-j Mezhdunarodnoj zaochnoj nauchno-prakticheskoj konferencii, v ramkah Mezhdunarodnogo molodezhnogo foruma «Kreativ i innovacii 2023», Minsk, 30 noyabrya 2023 goda. Minsk: BNTU, 2023: 11–15.
12. Mihajlov A. V. “O neustanovivshemsya dvizhenii vody v kamere shlyuzov” Sb. AN SSSR. Gidravlika sooruzhenij i dinamika rechnyh rusel. (1959): 42–68.
13. Volodin A. G. “Raschet napolneniya kamery shlyuza metodom Galerkina” Tr. NIIVT. Voprosy tekhnicheskoj ekspluatacii transportnyh gidrotekhnicheskih sooruzhenij. (1986): 68–71.
14. Belkin V. G. “Primenenie metoda Galerkina dlya potoka v kamere shlyuza” Tr. NIIVT. Voprosy gidravlicheskogo obosnovaniya putevyh rabot na rekah. (1989): 87–94.
Review
For citations:
Morgunov K.P., Bogatyrev V.G. Compensation of the first reverse peak of the hydrodynamic force during filling of the lock chamber with a head supply system. Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova. 2025;17(3):340-349. (In Russ.) https://doi.org/10.21821/2309-5180-2025-17-3-340-349. EDN: EOKVWY