Method for calculating the positions of specific points on the multifocal ship’s domain
https://doi.org/10.21821/2309-5180-2025-17-3-319-330
EDN: DCODQX
Abstract
The concept of approximating of a ship’s domain on the ground of the continuous deformable media is considered as a continuous set of points of the multifocal ellipse. It is also applicable in the navigational hazards clearing problem. The configuration of the multifocal ellipse ship’s domain allows to present more accurately the information of the various kinematic and dynamic parameters of the vessel’s motion and generate the control actions to ensure safety of navigation. If ship’s domain is formalized as the multifocal ellipse safety of navigation requires the development of the principles of control actions on the kinematic level. The non-trivial problem of determining the positions of the special points on the ship’s domain: the closest point on the ship’s domain to the navigational hazard, intersection point with the relative motion line, and the “extreme” points arises. Due to the nonlinearity of the multifocal ellipse equation, variations of the size and shape of the ship’s domain caused by the ship’s movement and the current navigation situation, the represented results are grounded on the classical navigational position fix method — the generalized method of the position lines. The general provisions of the research are supported by the infographics and are brought to practical application. The formalization of the proposed methods in the automatic navigation or in autonomous ship’s control systems will enable the navigator on board or operating the vessel remotely to solve the various navigation problems on a new level and in interconnection with traditional methods of safety of navigation monitoring.
About the Author
A. A. MironenkoRussian Federation
Aleksandr A. Mironenko — Dr. of Technical Sciences, associate professor Admiral Makarov State University of Maritime and Inland Shipping.
5/7 Dvinskaya Str., St. Petersburg, 198035
References
1. Vas’kov, A. S. and A.A. Mironenko. “The methods for planning no-go area clearing lines in the vessel’s control systems.” Morskie intellektual’nye tekhnologii 3–1(61) (2023): 110–119. DOI: 10.37220/MIT.2023.61.3.036.
2. Vas’kov, A. S. Metodologicheskie osnovy upravleniya dvizheniem sudna i konfiguratsiey zony navigatsionnoy bezopasnosti: spetsial’nost’ 05.22.16. Grand PhD diss. Sankt-Peterburg, 1998.
3. Vas’kov, A. S. and A. A. Mironenko. “The multifocal ellipse ship’s domain model.” Morskie intellektual’nye tekhnologii 4–1(66) (2024): 259–266. DOI: 10.37220/MIT.2024.66.4.031.
4. Egorov, I. B. and V. A. Loginovskiy. “Review of ship domain concept and it’s application in navigation.” Ekspluatatsiya morskogo transporta 3(69) (2012): 13–17.
5. Pashentsev, S. V. «Postroenie zony navigatsionnoy bezopasnosti ob»ekta i ego kinematicheskikh kharakteristik na osnove observatsii dvukh raznesennykh tochek ob»ekta.» Vestnik MGTU. Trudy Murmanskogo gosudarstvennogo tekhnicheskogo universiteta 3.1 (2000): 13–16.
6. Smolentsev, S. V., A. E. Filyakov and D. V. Isakov. “Adaptive dynamic safety domain for different sailing conditionsadaptive dynamic safety domain for different sailing conditions.” Vestnik gosudarstvennogo universiteta morskogo i rechnogo flota im. admirala S. O. Makarova 15.6 (2023): 932–940. DOI: 10.21821/2309-5180-2023-15-6-932-940.
7. SHvetsova, A. F. and A. A. Lentarev. “Kontseptsiya zony navigatsionnoy bezopasnosti: formirovanie i etapy razvitiya.” Transport Problems of The Far East. Proceedings of The Scientific and Practical Conference 1 (2017): 123–132.
8. Dinh, G. H. and N.-K. Im. “The combination of analytical and statistical method to define polygonal ship domain and reflect human experiences in estimating dangerous area.” International Journal of e-Navigation and Maritime Economy 4 (2016): 97–108. DOI: 10.1016/j.enavi.2016.06.009.
9. Lee, H-J., Y. Furukawa and D-J. Park. “Seafarers’ awareness-based domain modelling in restricted areas.” Journal of Navigation 74.5 (2021): 1172–1188. DOI: 10.1017/S0373463321000394.
10. Liu, D., Z. Zheng and Z. Liu. “Research on Dynamic Quaternion Ship Domain Model in Open Water Based on AIS Data and Navigator State.” Journal of Marine Science and Engineering 12.3 (2024). DOI: 10.3390/jmse12030516.
11. Pietrzykowski, Z. and M. Wielgosz. “Effective ship domain — Impact of ship size and speed.” Ocean Engineering 219 (2021): 108423. DOI: 10.1016/j.oceaneng.2020.108423.
12. Rawson, A. and M. Brito. “Developing contextually aware ship domains using machine learning.” Journal of Navigation 74.3 (2021): 515–532. DOI: 10.1017/S0373463321000047.
13. Szlapczynski, R. and J. Szlapczynska. “Review of ship safety domains: Models and applications.” Ocean Engineering 145 (2017): 277–289. DOI: 10.1016/j.oceaneng.2017.09.020.
14. Zhang, F., H. Zheng, et al. “A Spatiotemporal Statistical Method of Ship Domain in the Inland Waters Driven by Trajectory Data.” Journal of Marine Science and Engineering 9.4 (2021). DOI: 10.3390/jmse9040410.
15. Wielgosz, M. and Z. Pietrzykowski. “The ship domain in navigational safety assessment.” PLOS ONE 17.4 (2022): 1–21. DOI: 10.1371/journal.pone.0265681.
16. Wang, Z., M. Zheng, et al. “Risk Identification Method for Ship Navigation in the Complex Waterways via Consideration of Ship Domain.” Journal of Marine Science and Engineering 11.12 (2023). DOI: 10.3390/jmse11122265.
17. Grinyak, V. M. and A. S. Devyatisil’nyi. “Fuzzy collision avoidance system for ships.” Journal Of Computer And Systems Sciences International 2 (2016): 93. DOI: 10.7868/S0002338816010078.
18. Dmitriev, S. P., N. V. Kolosov and A. V. Osipov. “Synthesis of safe passing trajectories, using artificial intelligence methods.” Shipbuilding 3(730) (2000): 39–42.
19. Korenev, A. S., S. P. Khabarov and A. G. Shpektorov. “Application of the dubins path problem to avoid the dangerously close approach of two vessels.” Morskie intellektual’nye tekhnologii 2–1(56) (2022): 127–135. DOI: 10.37220/MIT.2022.56.2.017.
20. Kurguzov, S. S. and M. P. Khadzhinov. “Defining the real distance for prevention of ships collisions under the ais information.” Ekspluatatsiya morskogo transporta 2(56) (2009): 31–33.
21. Nekrasov, S. N., D. V. Trenenkov and K. I. Efimov. «Vychislenie garantirovannogo kursa raskhozhdeniya pri opasnosti sblizheniya vplotnuyu.» Vestnik gosudarstvennogo universiteta morskogo i rechnogo flota im. admirala S. O. Makarova 1(29) (2015): 1–15. DOI: 10.21821/2309-5180-2015-7-1-1-15.
22. Pelevin, A. E. “Guaranteed estimation of ships’ domains.” Vestnik gosudarstvennogo universiteta morskogo i rechnogo flota im. admirala S. O. Makarova 11.5 (2019): 823–830. DOI: 10.21821/2309-5180-2019-11-5-823-830.
Review
For citations:
Mironenko A.A. Method for calculating the positions of specific points on the multifocal ship’s domain. Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova. 2025;17(3):319-330. (In Russ.) https://doi.org/10.21821/2309-5180-2025-17-3-319-330. EDN: DCODQX