Preview

Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova

Advanced search

USING OXYGEN INSTEAD OF AIR AS AN OXIDIZER OF MARINE FUEL FOR SHIP POWER PLANTS

https://doi.org/10.21821/2309-5180-2020-12-3-583-590

Abstract

The atmospheric air used to burn any organic carbon-containing fuel contains two main macrocomponents by volume: 79.03 % nitrogen and 20.92 % oxygen, the rest is carbon dioxide, argon, xenon, krypton, ozone, helium, hydrocarbons in the amount of 0.05 %. In the process of fuel oxidation, nitrogen is an inert substance, does not support the process of fuel oxidation, and at high temperatures and pressures in the combustion chamber, nitrogen is oxidized by oxygen with the formation of highly toxic nitrogen oxides. To increase the degree of oxidation of marine fuel in the fuel-air mixture, a high coefficient of excess air is maintained, which leads to an even greater increase in the mass of nitrogen. In the combustion chamber, the nitrogen contained in the fuel-air mixture is heated to 850-1000 ° C, which leads to unproductive consumption of marine fuel. The dimensions and metal consumption of the ship power plant (SPP) are therefore high. An alternative solution for air replacement with oxygen, used as an oxidizing agent in the ship power plants is proposed in the paper. This decision has been stimulated by a number of technical advantages in replacing air with oxygen, namely, reducing the metal consumption of the SPP, reducing marine fuel consumption, reducing the emission of carbon dioxide, which is the main component of «greenhouse» gases - harmful toxic components, in particular, the complete elimination of nitrogen oxides with exhaust gases of the ship power plant. As a result of this proposal implementation the economic and environmental problems of maritime transport can be solved. Using a specially developed computer program, the calculations of the SPP energy efficiency have been made; they have showed that in the case of replacing air with oxygen, the SPP efficiency increases by 25%, which, accordingly, leads to reducing marine fuel cost and reducing the harmful toxic components emission, in particular, carbon dioxide, which is the main component of “greenhouse” gases. Based on the analysis of scientific, technical, patent materials and our own scientific research, the process of obtaining oxygen on the alternative basis from water and carbon dioxide is of scientific and practical interest. Two schemes for obtaining oxygen from water and carbon dioxide, including heterogeneous catalytic processes, plasma-chemical installations, are proposed.

About the Authors

V. Ye. Leonov
Kherson State Maritime Academy
Russian Federation


A. A. Gurov
Kherson State Maritime Academy
Russian Federation


References

1. Леонов В. Е. Пути повышения эффективности морских грузоперевозок : моногр. / В. Е. Леонов, В. И. Дмитриев. - М.: МОРКНИГА, 2019. - 299 с.

2. Леонов В. Е. Экология и охрана окружающей среды: учеб. пособие / В. Е. Леонов, А. В. Ходаковский; под ред. д-ра техн. наук, проф. В. Е. Леонова. - Херсон: ИЦ ХГМА, 2016. - 348 с.

3. МЕРС 65/INF.17 IMO Model Course on Energy-Efficient Operation of Ships. - London: World Maritime University, 2013. - 61 p.

4. Guidelines for voluntary use of the ship energy efficiency Operational indicator (EEOI). - London: IMO, 2009. - 75 p.

5. Tran T. A. Research of the Scrubber Systems to Clean Marine Diesel Engine Exhaust Gases on Ships / T. A. Tran // Journal of Marine Science: Research & Development. - 2017. - Vol. 7. - Is. 6. - Pp. 243. DOI: 10.4172/2155-9910.1000243.

6. Пивоваров Л. А. Разработка плана управления энергоэффективностью судна (ПУЭЭС) для танкеров / Л. А. Пивоваров // Сборник материалов Международной научно-практической конференции «Современные информационные и инновационные технологии на транспорте» - MINTT-2013. - Херсон: ИЦ ХГМА, 2013. - Т. 1. - С. 73-77.

7. Laursen A. Availability of elements for heterogeneous catalysis: Predicting the industrial viability of novel catalysts / A. Laursen, J. Sehested, Ib. Chorkendorff, P. C. K. Vesborg // Chinese Journal of Catalysis. - 2018. - Vol. 39. - Pp. 16-26. DOI: 10.1016/S1872-2067(17)62979-6.

8. Winnes H. Reducing GHG emissions from ships in port areas / H. Winnes, L. Styhre, E. Fridell // Research in Transportation Business & Management. - 2015. - Vol. 17. - Pp. 73-82. DOI: 10.1016/j.rtbm.2015.10.008.

9. Rehmatulla N. The Implementation of Technical Energy Efficiency and CO2 Emission Reduction Measures in Shipping / N. Rehmatulla, J. Calleya, T. Smith // Ocean Engineering. - 2017. - Vol. 139. - Pp. 184-197. DOI: 10.1016/j.oceaneng.2017.04.029.

10. Zhmur V. N. Ways to increase economic energy efficiency and environmental safety of sea freight / V. N. Zhmur, V. Ye. Leonov // American Scientific Journal. - 2018. - Vol. 19. - Pp. 15-21.

11. Пилипенко А. Т. Краткий справочник по химии / А. Т. Пилипенко, И. Т. Гороновский, Ю. П. Назаренко, Е.Ф. Некряч; под общ. ред. акад. АН УССР А. Т. Пилипенко. - Киев: Наукова думка, 1987. - 830 с.


Review

For citations:


Leonov V.Ye., Gurov A.A. USING OXYGEN INSTEAD OF AIR AS AN OXIDIZER OF MARINE FUEL FOR SHIP POWER PLANTS. Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova. 2020;12(3):583-590. (In Russ.) https://doi.org/10.21821/2309-5180-2020-12-3-583-590

Views: 218


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2309-5180 (Print)
ISSN 2500-0551 (Online)