Materials and technologies for rebuilding ship propellers blades damaged under cavitation attack: history and current state
https://doi.org/10.21821/2309-5180-2024-16-6-946-963
Abstract
Materials used for manufacturing ship propellers were listed, and classification of technologies of repairing ship propellers with cavitation wear spots was cited. The characteristics of materials used in the technologies were given. The advantages and disadvantages of the repair through deposition by welding as main technology at present time were listed. Alloys most resistant to cavitation wear were considered: dispersion-hardening alloys and alloys, in which the phase transformation occurs in cavitation impacts. The low manufacturability of mentioned alloys was pointed to, that is the principal cause of the fact that these alloys did not have a wide distribution in ship propellers repair. In modern practice of deposition by welding, the filler materials close by composition to the propeller alloys are used, and priority is given to regular recovery of surface quality and not to the rise in the surface wear-resistance. Improvement of the welding technology is now directed at the development of technological methods to raise the wear resistance, that is the methods, not based on the using the filler materials different from ship propellers materials. The advantage of the use of polymeric materials to repair the cavitation wear spots on the blades is noted. All the repair compounds are made of thermosetеtting resins, the most widespread of which are epoxy compounds. The peculiarities of cavitation attack on the blade surface in service are analyzed. It was mentioned that polymeric compounds being used nowadays are developed without taking into account these peculiarities. One has to draw attention to that the longevity of polymeric compound under propeller cavitation is determined in many respects by the adhesion of polymer to propeller material. A solution for the problem of the low adhesion of the polymer compounds to the propellers alloys will displace the repair technology based on the deposition by welding in future.
About the Authors
Y. N. TsvetkovRussian Federation
Tsvetkov Yuriy Nikolayevich — doctor of science, professor
d.5/7, ul. Dvinskaya, Saint-Petersburg, 198035
S. G. Baranov
Russian Federation
Baranov Sergey Genadiyevich — senior lecturer
d.5/7, ul. Dvinskaya, Saint-Petersburg, 198035
Ya. O. Fiaktistov
Russian Federation
Fiaktistov Yaroslav Olegovich — senior lecturer
d.5/7, ul. Dvinskaya, Saint-Petersburg, 198035
References
1. Pustoshnyj, A. V., A. V. Sverchkov and S. P. Shevtsov “Vliyanie sherokhovatosti poverkhnosti grebnogo vinta na ego propulsivnye kharakteristiki.” Trudy Krylovskogo gosudarstvennogo nauchnogo tsentra 4(390) (2019): 11‒26. DOI: 10.24937/2542-2324-2019-4-390-11-26.
2. Gao, G and Zh. Zhang. “Cavitation erosion mechanism of 2Cr13 stainless steel” Wear. 488–489 (2022): 204137. DOI: 10.1016/j.wear.2021.204137.
3. Hattori, S., T. Itoh “Cavitation erosion resistance of plastics”. Wear 271(2011): 1103–1108. DOI:10.1016/j.wear.2011.05.012.
4. Yamatogi, T., H. Murayama, K. Uzawa, K. Kageyama and N. Watanabe “Study on cavitation erosion of composite materials for marine propeller”. 17th International Conference on Composite Materials. Edinburgh, Scotland (2009):10.
5. Koivuluoto, H., A. Milanti, G. Bolelli, L. Lusvarghi, P. Vuoristo. “High-pressure cold sprayed Ni and NiCu coatings: improved structures and corrosion properties”. Journal of Thermal Spray TRechnology. 23.1–2 (2014): 98–103. DOI: 10.1007/s11666-013-0016-7.
6. Jiang, X., N. Overman, C. Smith and K. Ross. “Microstructure, hardness and cavitation erosion resistance of different cold spray coatings on stainless steel 316 for hydropower applications” Materials Today Communications. 25 (2020): 1–27. DOI:10.1016/j.mtcomm.2020.101305.
7. Bray, M., A. Cockburn and W. O’Neil. “The laser-assisted cold spray process and deposit characterization”. Surface and Coatings Technology. 203 (2009): 2851–2857. DOI: 10.1016/j.surfcoat.2009.02.135.
8. Tsvetkov, Y. N. Kavitatsionnoye iznashivaniye metallov i oborudovaniya. SPb.: Izd-vo SPbGPU, 2003.
9. Li X. Y. Cavitation erosion and corrosion behavior of copper–manganese–aluminum alloy weldment / X. Y. Li, Y. G. Yan, L. Ma, Z. M. Xu, J. G. Li // Materials Science and Engineering A. — 2004. — Vol. 382. — Pp. 82–89. DOI:10.1016/j.msea.2004.04.032.
10. Lu, X., Ch. Chen, K. Dong, Z. Li and J. Chen. “An equivalent method of jet impact loading from collapsing near-wall acoustic bubbles: A preliminary study”. Ultrasonics Sonochemistry. 79 (2021): 105760. DOI: 10.1016/j.ultsonch.2021.105760.
11. Ahmad, A. “Refurbishing damaged surfaces of nickelaluminum bronze propellers: A robotic approach using gas metal arc welding and friction stir processing”. Proceedings of 8th International Conference on Advanced Materials Engineering and Technology (ICAMET 2020) AIP Conf. Proc. 2347 (2021): 020156–1–020156–10. DOI: 10.1063/5.0053484.
12. Bakshi, D., Ch. Prakash, S. Singh, R. Kumar and D. Ashri. “ADetailed Study on Friction Stir Welding and Friction Stir Processing — A Review Paper”. International Journal of Industrial Engineering and Technology 4.1 (2014): 1–2.
13. Muñoz-Cubillos, J., J. J. Coronado and S. A. Rodríguez. “On the cavitation resistance of deep rolled surfaces of austenitic stainless steels”. Wear 428–429 (2019): 24–31. DOI: 10.1016/j.wear.2019.03.001.
14. Mesaa, D. H., C. M. Garzónc and A. P. Tschiptschin. “Influence of cold-work on the cavitation erosion resistance and on the damage mechanisms in high-nitrogen austenitic stainless steels“. Wear 271 (2011): 1372–1377. DOI: 10.1016/j.wear.2011.01.063.
15. da Cruza, J. R., S. L. Henkeb and A. S. Clímaco Monteiro d’Oliveir “Effect of Cold Work on Cavitation Resistance of an Austenitic Stainless Steel Coating”. Materials Research. 19.5 (2016): 1033–1041. DOI: 10.1590/1980-5373-MR2015-0442.
16. Chursova, L. V., N. N. Panina, T. A. Grebneva and I. Y Kutergina. Epoksidniye smoly, otverditeli. Modifikatory i svyazuyushiye na ih osnove. SPb.: TsOP “Professiya”, 2020.
17. Bolewski, Ł., M. Szkodo and M. Kmiećs. “Cavitation erosion degradation of belzona coating”. Аdvances in materials science 17.1(51) (2017): 22–33. DOI: 10.1515/adms‐2017‐0002.
18. Tsvetkov, Y. N., Y. O. Fiaktistov and E. O. Gorbachenko. “Otsenka diametra struy vody, vozdeystvuiyshih na poverhnost’ lopastey grebnyh vintov pri kavitatsionnom iznashivanii”. Vestnik AGTU. Seriya: Morskaya tehnika i tehnologiya 1 (2021): 54–64. DOI: 10.24143/2073-1574-2021-1-54-64.
19. Tsvetkov, Y. N., E. O. Gorbachenko and Ya. O. Fiaktistov “Analysis of the Geometry of Dents on a Propeller Blade Surface during Cavitation Wear”. Journal of Friction and Wear 42.1 (2021): 17–22. DOI: 10.32864/0202-4977-2021-42-1-33-41.
20. Fiaktistov, Ya. O. and Yu. N. Tsvetkov Kavitatsionnaya iznosostojkost polimernykh sostavov s metallicheskim napolnitelem. Astrakhan: Astrakhanskij gosudarstvennyj tekhnicheskij universitet, 2021: 857–862.
21. Fiaktistov, Y. O., Y. N. Tsvetkov and N. S. Zaytseva. “Mehanizn razrusheniya epoksidnyh kompozitov s metallicheskim poroshkovym napolniteloem pri kavitatsionnom vozdeystvii” Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova 15.1 (2023): 64–72. DOI: 10.21821/2309-5180-2023-15-1-64-72.
22. Tsvetkov, Y. N., N. M. Vihrov and Y. O. Fiaktistov. “Vliyaniye dobavki bronzovogo poroshka na adgeziyu epoksidnogo kompaunda k alyuminievoy bronze” Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova 16.2 (2024): 282–289. DOI: 10.21821/2309-5180-2024-16-2-282-289.
Review
For citations:
Tsvetkov Y.N., Baranov S.G., Fiaktistov Ya.O. Materials and technologies for rebuilding ship propellers blades damaged under cavitation attack: history and current state. Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova. 2024;16(6):946-963. (In Russ.) https://doi.org/10.21821/2309-5180-2024-16-6-946-963