Preview

Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova

Advanced search

Generalization of the underwater relief image using the spline approximation method on a vector electronic chart

https://doi.org/10.21821/2309-5180-2024-16-6-910-934

Abstract

Special attention is paid to the need for reasonable generalization aimed at adequately displaying the characteristic features of the seabed relief profile in accordance with the principle of navigational isosurface in electronic visualization of underwater relief. It is assumed that as a result of generalization of the bottom relief, safety contours can be extracted directly, since they represent traces of a cross-section of the profile of the underwater relief with horizontal planes. A hypothesis has been put forward on the applicability of the B-spline approximation for modeling a safety contour in order to effectively implement a practical guarantee against grounding a ship. A modification of the safety contour based on the control of the smoothness of the constructed curve in the form of bending of a serpentine B-spline structure has been tested. An analysis of the optimality of configuring B-splines on a variable type of supports is carried out with the determination of preference for the cubic case. The straightening of the safety contour focuses on local deformation while maintaining strategic descriptive characteristics. The use of the smoothing procedure on the deep side of the safety contour is justified, provided that the basis points of the synthesized curve are artificially preserved. The data of the author’s computational experiment on the accuracy of calculation by cubic B-splines with a result two orders of magnitude higher than theoretically predicted are presented. It is noted that the technologies of automated processing of bathymetric survey results do not replace the human factor, but provide the potential to unlock new cognitive capabilities of an expert in the transition from lithographic publications to digital cartographic products. The arsenal of basic piecewise approximation is interpreted as the variability of the model of an additive B-spline neural network to provide an incentive for the use of artificial intelligence to generalize contour lines of marine subjects. It is emphasized that the spline technology, by its mathematical architecture, is basically devoid of the computational problem of dimensionality, which serves as an additional factor for the use of piecewise approximation in solving complex navigation tasks.

About the Author

I. V. Yuyukin
Admiral Makarov State University of Maritime and Inland Shipping
Russian Federation

Yuyukin, Igor V. — PhD, associate professor

5/7 Dvinskaya Str., St. Petersburg, 198035



References

1. Kostenich A V., A. A. Veselov and V. Yu. Bakhmutov “Tsifrovye modeli rel’efa morskogo dna korrektsionnykh poligonov dlya podvodnoy navigatsii po rel’efu.” Navigatsiya i gidrografiya 69. 2022: 32–41.

2. Guilbert, Eric, Julien Gaffuri and Bernhard Jenny. “Terrain generalisation.” Abstracting geographic information in a data rich world: methodologies and applications of map generalisation. Berlin, Heidelberg, New-York: Springer, 2014: 227–258. DOI: 10.1007/978-3-319-00203-3_8.

3. Zubchenko, E. S. “Navigational surface — a new form of digital model for presenting the bottom relief survey data to increase the safety of navigation.” Navigatsiya i gidrografiya 27 (2008): 77–93.

4. Yuyukin, Igor V. “Spline model of gridded data operation as principle of electronic mapping seabed topographies.” Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova 14.5 (2022): 656–675. DOI: 10.21821/2309-5180-2022-14-5-656-675.

5. Calder, Brian R. and Larry A. Mayer. “Automatic processing of high-rate, high-density multibeam echosounder data.” Geochemistry, Geophysics, Geosystems 4.6 (2003): 1048. DOI: 10.1029/2002GC000486.

6. Li, Zhenlong. “Geospatial Big Data Handling with High Performance Computing: Current Approaches and Future Directions.” High Performance Computing for Geospatial Applications. Springer, Cham, 2020. 53–76. DOI: 10.1007/978-3-030-47998-5_4.

7. Koshel’, S. M. . “Modelirovanie rel’efa po izoliniyam.” Universitetskaya shkola geograficheskoy kartografii : k 100-letiyu prof. K. A. Salischeva. Moskva : Aspekt press, 2005: 198–208.

8. Koshel, Sergey, and Oleg Mikhalyov. “New approaches in cartographic relief representation with morphometric variables.” Proceedings of 26th International Cartographic Conference. ICA, 2013. DOI: 10.13140/RG.2.1.3100.6566.

9. Samsonov, T. E. . “Kartograficheskie metody vizualizatsii i generalizatsii tsifrovykh modeley rel’efa.” Geomorfologi : Sovremennye metody i tekhnologii tsifrovogo modelirovaniya rel’efa v naukakh o Zemle. Tom Vypusk 6. Moskva : Media-PRESS, 2016: 9–18.

10. Afonin, Andrey B., Sergey A. Lutkov and Aleksandr L. Tezikov. “Features creation of depth contours in the conditions of insufficient hydrographic study of the seabed.” Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova 7.4 (2015): 90–95.

11. Nada, Tamer, Christos Kastrisios, Brian Calder, Christie Ence, Craig Greene and Amber Bethell. “Towards automating the nautical chart generalization workflow.” Geo-spatial Information Science (2024): 1–26. DOI: 10.1080/10095020.2024.2366873.

12. Skopelti, Andriani, Lysandros Tsoulos, Leda Stamou and Shachak Pe’eri. “Nautical Charts Generalization: A Pragmatic Approach.” Abstracts of the International Cartographic Association 3 (2021): 267. DOI: 10.5194/ica-abs3-267-2021.

13. Burghardt, Dirk. “Controlled Line Smoothing by Snakes.” Geoinformatica 9 (2005): 237–252. DOI: 10.1007/s10707-005-1283-3.

14. Yuyukin, Igor V. “Realization of the smoothness of spline trajectory configuration for avoidance of no-go areas in due time.” Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova 16.3 (2024): 421–443. DOI: 10.21821/2309-5180-2024-16-3-421-443.

15. Yuyukin, Igor V. “Optimization of navigational isosurface simulation by the methods of basic finite splines.” Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova 11.2 (2019): 266–274. DOI: 10.21821/2309-5180-2019-11-2-266-274.

16. Saux, Eric. “B-spline functions and wavelets for cartographic line generalization.” Cartography and geographic information science 30.1 (2003): 33–50. DOI: 10.1559/152304003100010938.

17. Zhukhlin, A. M. and K. P. Mamaev. Ispol’zovanie metoda splayn-funkciy dlya opisaniya opasnoy izobaty. М.: Mortchinformreklama, 1993.

18. Zhang, Yulong, Pengwei Wang, Kaichen Cui, Hengheng Zhou, Jinshan Yang and Xiangcun Kong. “An Obstacle Avoidance Path Planning and Evaluation Method for Intelligent Vehicles Based on the B-Spline Algorithm.” Sensors 23.19 (2023): 8151. DOI: 10.3390/s23198151.

19. Kastrisios, Christos, Colin Ware, Brian Calder, Thomas Butkiewicz, Lee, Alexander and Olivia Hauser. “Nautical chart data uncertainty visualization as the means for integrating bathymetric, meteorological, and oceanographic information in support of coastal navigation.” 100th American Meteorological Society Meeting, 18th Symposium on Coastal Environment. AMS, 2020. DOI: 10.6084/m9.figshare.12196764.

20. Yuyukin, Igor V. “The problem of implementing the concept of maximum integration of heterogeneous data in practical navigation.” Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova 15.6 (2023): 998–1014. DOI: 10.21821/2309-5180-2023-15-6-998-1014.

21. Dyer, Noel, Christos Kastrisios and Leila De Floriani. “Label-based generalization of bathymatry data for hydrographic sounding selection.” Cartography and Geographic Information Science 49.4 (2022): 338–353. DOI: 10.1080/15230406.2021.2014974.

22. Glang, Gerd F., Shepard Smith and Dawn Forsythe. “NOAA Harnesses Digital Technology to Improve Navigational Intelligence.” Marine Technology Society Journal 49.2 (2015): 159–166. DOI: 10.4031/MTSJ.49.2.4.

23. Guilbert, Eric and Eric Saux. “Cartographic generalization of lines based on B-spline snake model.” International Journal of Geographical Information Science 22.8 (2008): 847–870. DOI: 10.1080/13658810701689846.

24. Yan, Jingya, Eric Guilbert and Eric Saux. “An ontology-driven multi-agent system for nautical chart gene-ralization.” Cartography and Geographic Information Science 4 4.3 ( 2017): 201–215. DOI: 10.1080/15230406.2015.1129648.

25. Guilbert, Eric, and Hui Lin. “Isobathymetric Line Simplification with Conflict Removal Based on a Bspline Snake Model.” Marine Geodesy 30.1–2 (2007): 169–195. DOI: 10.1080/01490410701296697.

26. Guilbert, Eric and Hui Lin. “B-spline curve smoothing for isobathymetric line generalization.” Geographic Information Sciences 11.2 (2005): 78–86. DOI: 10.1080/10824000509480603.

27. Kastrisios, Christos. “Efforts to Streamline Bathymetry Compilation for Marine Navigation.” Abstracts of the International Cartographic Association 6 (2023): 119. DOI: 10.5194/ica-abs6-119-2023.

28. Kastrisios, Christos, Noel Dyer, Tamer Nada, Stilianos Contarinis, and Jose Cordero. “Increasing Efficiency of Nautical Chart Production and Accessibility to Marine Environment Data through an Open-Science Compilation Workflow.” ISPRS International Journal of Geo-Information 12.3 (2023): 116. DOI: 10.3390/ijgi12030116.

29. Samsonov, Timofey “Granularity of Digital Elevation Model and Optimal Level of Detail in Small-Scale Cartographic Relief Presentation.” Remote Sensing 14.5 (2022): 1270. DOI: 10.3390/rs14051270.

30. Guilbert, Eric, and Hui Lin. “B-Spline Curve Smoothing under Position Constraints for Line Generalization.” Proceedings of the 14th annual ACM International Symposium on Advances in Geographic Information Systems (GIS’06). ACM, 2006: 3–10. DOI: 10.1145/1183471.1183474.

31. Loginovsky, Vladimir A. “Assessing the accuracy of ship position through real-time measurements.” Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova 16.3 (2024): 335–346. DOI: 10.21821/2309-5180-2024-16-3-335-346.

32. Andreeva, Ekaterina V. and Aleksandr L. Tezikov. “Formalization of the constraint indicator of the Northern Sea Route water area.” Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova 14.1 (2022): 55–62. DOI: 10.21821/2309-5180-2022-14-1-55-62.

33. Afonin, Andrej B., Ivan Yu. Korolev and Aleksandr L. Tezikov. “Research of influence of the detail of hydrographic surveys on assessment of depths through passage.” Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova 9.5 (2017): 1007–1016. DOI: 10.21821/2309-5180-2017-9-5-1007-1016.

34. Delgado-Gonzalo, Ricard, Daniel Schmitter, Virginie Uhlmann, and Michael Unser “Efficient Shape Priors for Spline-Based Snakes.” IEEE Transactions on Image Processing 24.11 (2015): 3915–3926. DOI: 10.1109/TIP.2015.2457335.

35. Miao, Dandan, and Brian Calder. “Gradual generalization of nautical chart contours with a cubic B-spline snake model.” OCEANS-San Diego. IEEE, 2013. DOI: 10.23919/OCEANS.2013.6741201.

36. Yuyukin, Igor V. “Application of the spline-functions method in computer visualization of underwater relief.” Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova 13.1 (2021): 64–79. DOI: 10.21821/2309-5180-2021-13-1-64-79.

37. Krassanakis, Vassilios, Andriani Skopelti, Merve Keskin, and Paweł Cybulski “Geovisualization: Current Trends, Challenges, and Applications.” Geographies 3.4 (2023): 801–805. DOI: 10.3390/geographies3040043.

38. Yuyukin, Igor V. “Perspective magnetic navigation with using the method of spline functions for optimal formation of the map-aided standard.” Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova 14.4 (2022): 519–534. DOI: 10.21821/2309-5180-2022-14-4-519-534.

39. Campbell, Bryce K. “An arbitrarily high-order three-dimensional Cartesian-grid method for reconstructing interfaces from volume fraction fields.” Journal of Computational Physics 426 (2021): 109727. DOI: 10.1016/j.jcp.2020.109727.

40. Gralak, Rafal A. “A Method of Navigational Information Display Using Augmented Virtuality.” Journal of Marine Science and Engineering 8.4 (2020): 237. DOI: 10.3390/jmse8040237.

41. Bayer, Tomas, Ivana Kolingerova, Marek Celonk and Jakub Lysak “Simplification of contour lines, based on axial splines, with high-quality results.” International Journal of Geographical Information Science 37.7 (2023): 1520–1554. DOI: 10.1080/13658816.2023.2193969.

42. Contarinis, Stilianos, Byron Nakos, Lysandros Tsoulos and Athanasios Palikaris. “Web-based nautical charts automated compilation from open hydrospatial data.” The Journal of Navigation 75.4 (2022): 763–863. DOI: 10.1017/S0373463322000327.

43. Mukhametshin, A. R., T. E. Samsonov and I. K. Lurie. “Coordinate georeferencing of geoimages using computer vision.” Geodesy and Cartography 85.5 (2024): 24–36. DOI: 10.22389/0016-7126-2024-1007-5-24-36.

44. Vulfovich, Boris, and Vasily Fogilev “New Ideas for Celestial Navigation in the Third Millennium” The Journal of Navigation 63.2 (2010): 373–378. DOI: 10.1017/S0373463309990348.

45. Deryabin, Viсtor V. “Depth-based vessel position fixing by means of a neural network.” Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova 16.1 (2024): 7–16. DOI: 10.21821/2309-5180-2024-16-1-7-16.

46. Fakhoury, Daniele, Emanuele Fakhoury, and Hendrik Speleers. “ExSpliNet: An interpretable and expressive spline-based neural network.” Neural Networks 152 (2022): 332–346. DOI: 10.1016/j.neunet.2022.04.029.

47. Yuyukin, Igor V. “Spline synthesis of the charted reference of the field informativity in mission correlation-extreme navigation.” Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova 14.1 (2022): 25–39. DOI: 10.21821/2309-5180-2022-14-1-25-39.

48. Stepanov, O.A., A. V. Motorin, V. P. Zolotarevich, A. M. Isaev and Yu. A. Litvinenko. “Recursive and Nonrecursive Algorithms Applied to Navigation Data Processing: Differences and Interrelation with Factor Graph Optimization Algorithms.” 2024 31st Saint Petersburg International Conference on Integrated Navigation Systems (ICINS). — IEEE, 2024. DOI: 10.1016/j.rtbm.2014.11.004.

49. Vasilev, V. A. and O. A. Stepanov. “The efficiency of a map-aided navigation under variability of the corrected navigation system errors.” Matematicheskoe modelirovanie, komputernyi i naturnyi eksperiment v estestvennyh naukah 4 (2022): 7–11. DOI: 10.24412/2541-9269-2022-4-07-11.


Review

For citations:


Yuyukin I.V. Generalization of the underwater relief image using the spline approximation method on a vector electronic chart. Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova. 2024;16(6):910-934. (In Russ.) https://doi.org/10.21821/2309-5180-2024-16-6-910-934

Views: 102


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2309-5180 (Print)
ISSN 2500-0551 (Online)