Test results of the shore system for optimizing marine vessel traffic
https://doi.org/10.21821/2309-5180-2024-16-6-874-884
Abstract
The article presents the results of research a prototype of a coastal software and hardware complex, which calculate optimal routes. The purpose of the article is to analyze the quality of the calculated routes depending on the effect of meteorological conditions in the navigation area. The routes plotted using the created prototype of the coastal software complex, which use information from ships and satellites allows creating and adjusting the optimal route of the vessel in the process of seaway. The analysis carried out on base of actual voyages of ships from the port of Vladivostok to the port of Magadan and Petropavlovsk-Kamchatsky. Geographic, real and meteorological (proposed by the complex) routes were compared in article. An analysis was carried out of the effect of the speed and direction of the surface wind, the speed and direction of surface sea currents and the parameters of sea waves (wave height, direction of propagation and period) on the ship’s motion. In the article, was estimated the calculated and actual speed of the vessel. The presented coastal hardware and software complex calculated meteorological models of the selected in article ships, which point to the change in their speed and course depending on the surrounding hydrometeorological conditions and ship’s parameters. The analysis result showed the inverse dependence of the effect of surface wind and sea waves on the ships speed and the direct dependence on its draft. It is give information that the change in course significantly affects the speed, slowing down it. The complex offers route options with the required track angle, compensating for the ships drift, thereby providing more favorable traffic conditions. The proposed mathematical models allow us to estimate the approximate time of the ship’s routes along alternative routes. The article shows that the complex offers route options that allow saving about 2–3 % of the total route time, which for the routes research in the article, is 2–4 hours.
About the Author
D. A. AkmaykinRussian Federation
Akmaуkin Denis A. — Ph.D., Associate Professor; Associate Professor of the Department of Radio Electronics and Radio Communications
50A, Verkhneportovaya str., Vladivostok, 690003
References
1. Deryabin, V. V. Planirovanie perekhoda v elektronnykh kartograficheskikh navigatsionnykh informatsionnykh sistemakh (EKNIS): Uchebnoe posobie. Elektronnoe izdanie lokalnogo rasprostraneniya. Sankt-Peterburg: Naukoemkie tekhnologii, 2022.
2. Sukhina, M. I., G. V. Belokur and A. V. Golovko. Gidrometeorologicheskoe obespechenie sudovozhdeniya: Uchebno-metodicheskoe posobie. Moskva: Obshchestvo s ogranichennoj otvetstvennostyu «Nauchno-izdatelskij tsentr INFRA-M», 2019. DOI: 10.12737/textbook_5c7cd08e298529.81917710.
3. Grinyak, V. M. “Planirovanie marshrutov sudov na osnove klasterizatsii retrospektivnykh dannykh trafika akvatorii” Territoriya novykh vozmozhnostej. Vestnik Vladivostokskogo gosudarstvennogo universiteta ekonomiki i servisa 13.2 (2021): 61‒78. DOI: 10.24866/VVSU/2073-3984/2021-2/061-078.
4. Yuan, J., Wan, J., Zhang, X. et al. A second-order dynamic a nd static ship path planning model based on reinforcement learning and heuristic search algorithms. J Wireless Com Network 128 (2022). DOI: 10.1186/s13638-022-02205-4.
5. Akmajkin, D. A., D. B. Khomenko and S. F. Klyueva “Obzor funktsionalnykh vozmozhnostej i perspektivy sovremennykh avtomatizirovannykh sistem planirovaniya marshruta sudna” Vestnik gosudarstvennogo universiteta morskogo i rechnogo flota im. admirala S. O. Makarova 9.2 (2017): 237‒251. DOI: 10.21821/2309-5180-2017-9-2-237-251.
6. Akmajkin, D. A., V. V. Bocharova and A. V. Gams “Osnovnye printsipy i etapy planirovaniya marshrutov sudov” Ekspluatatsiya morskogo transporta 1(106) (2023): 50‒54. DOI: 10.34046/aumsuomt106/8.
7. FESCO. Web. 23 Sept. 2024 <https://www.fesco.ru/ru/>.
8. Nuriev, R. A. and A. A. Ershov “Protsedura vybora optimalnogo puti okeanskogo perekhoda pri shtormovom plavanii” Vestnik gosudarstvennogo universiteta morskogo i rechnogo flota im. admirala S. O. Makarova 13.5 (2021): 625‒635. DOI: 10.21821/2309-5180-2021-13-5-625-635.
9. Grinyak, V. M., A. S. Devyatisilnyj and V. A. Petrov “Planirovanie marshrutov sudov s uchyotom intensivnosti dvizheniya na morskoj akvatorii” Transport: nauka, tekhnika, upravlenie. Nauchnyj informatsionnyj sbornik 4 (2023): 3‒10. DOI: 10.36535/0236-1914-2023-04-1.
10. Minjoo Choi, Hyun Chung, Hajime Yamaguchi, Keisuke Nagakawa «Arctic sea route path planning based on an uncertain ice prediction model» Cold Regions Science and Technology 109 (2015): 61–69.
11. Akmajkin, D. A., V. V. Bocharova, S. F. Klyueva and A. V. Gams “Poisk optimalnogo puti sudna na osnove razlichnykh kriteriev” Ekspluatatsiya morskogo transporta 3(108) (2023): 72‒78. DOI: 10.34046/aumsuomt108/11.
12. Rutledge, Glenn K., Jordan Alpert, and Wesley Ebisuzaki. “NOMADS: A climate and weather model archive at the National Oceanic and Atmospheric Administration.” Bulletin of the American Meteorological Society 87.3 (2006): 327–342. DOI: 10.1175/BAMS87-3-327.
Review
For citations:
Akmaykin D.A. Test results of the shore system for optimizing marine vessel traffic. Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova. 2024;16(6):874-884. (In Russ.) https://doi.org/10.21821/2309-5180-2024-16-6-874-884