Preview

Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova

Advanced search

Summary of the results of field and laboratory studies of hydraulic resistance during channel bending

https://doi.org/10.21821/2309-5180-2024-16-5-726-737

Abstract

The reliability of channel forecasts, performed using mathematical modeling methods in the design of engineering activities on shipping rivers, largely depends on the accuracy of the assessment of hydraulic resistance and sediment transport parameters. Therefore, the hydraulic resistance of natural channels is one of the largest problems in the dynamics of channel flows and is the object of close attention of scientists. In the resistance of natural channels, roughness appears in three forms: the first of them is the roughness of the granular surface of the bottom; the second is the roughness created by boulders and the third type is the roughness of microforms: ripples and ridges. Channel mesoforms also contribute to the resistance to water movement: spits, side streams, middle streams, islands, bends of the channel and such complex formations as riffles. This type of resistance is usually called the resistance of the channel form. The resistance of the natural channel shape due to the movement and deformation of mesoforms can change significantly over time. The complexity and insufficient study of this issue significantly limit the possibilities of a theoretical approach to its solution. Therefore, the obtained results are mainly empirical or semiempirical in nature. The paper presents the results of experimental and field studies that allowed us to identify the main features of flow movement in winding sections of rivers. One of the features of flow movement at channel turns is the possibility of additional energy losses. The total resistance of a curved section of a channel is made up of three main parts: the resistance of the granular surface of the bottom, the resistance of the bottom ridges, and the resistance of the channel shape. The additional resistance created by the bend depends on the curvature of the channel, the rate of change in depth along the length of the bend, and also reflects the impact of side streams formed near the convex bank on the flow.

About the Authors

M. V. Zhuravlev
Admiral Makarov State University of Maritime and Inland Shipping
Russian Federation

Zhuravlev, Michail V. — PhD, associate professor

5/7 Dvinskaya Str., St. Petersburg, 198035



G. L. Gladkov
Admiral Makarov State University of Maritime and Inland Shipping
Russian Federation

Gladkov, Gennadii L. — Dr. of Technical Sciences, professor

5/7 Dvinskaya Str., St. Petersburg, 198035



P. V. Belyakov
Admiral Makarov State University of Maritime and Inland Shipping
Russian Federation

Belyakov, Pachom V. — PhD, associate professor

5/7 Dvinskaya Str., St. Petersburg, 198035



References

1. Gladkov G. “Sediment Transport and Water Flow Resistance in Alluvial River Channels: Modified Model of Transport of Non-Uniform Grain-Size Sediments.” Water 13.15 (2021): P. 2038. DOI: 10.3390/w13152038.

2. Grishanin K. V. Dinamika ruslovyh potokov. L.: Gidrometeoizdat, 1979.

3. Gladkov G. L. “Issledovanie zernistoj sherohovatosti dna rechnyh rusel.” Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova 12.2 (2020): 333‒346. DOI: 10.21821/2309-5180-2020-12-2-336-346.

4. Gladkov G. L. “Gidravlicheskoe soprotivlenie dvizheniyu vody i transport nanosov v rekah.” Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova 11.6 (2020): 1044‒1055. DOI: 10.21821/2309-5180-2019-11-6-1044-1055.

5. CHou V. T. Gidravlika otkrytyh kanalov. Per. s angl. M.: Strojizdat, 1969.

6. Rouse H. “Critical analysis of open channel resistance.” Proc. ASCE Hydr. Div. 91.4 (1965): 1‒23.

7. Onishi, Y., Jain, S.C., Kennedy, J.F. “Effects of meandering in alluvial streams.” Proc. ASCE Hydr. Div. 102.7 (1976): 899–917.

8. Mikkelsen, L., Engelund, F. “Flow resistance in meandering channels.” Prog. Rep.43. — Ins. Hydrodyn. and Hydr. Eng. Tech. Univ. Denmark., 1977: 7–10.

9. Velikanova Z. M. “Laboratornye issledovaniya rechnoj izviliny.” Trudy GGI 147 (1968): 40–52.

10. Velikanova Z. M. “Gryadovoe dvizhenie nanosov na modeli rechnoj izviliny.” Trudy GGI 169 (1969): 87–96.

11. ZHuravlev M. V. “Laboratornye issledovaniya poter’ napora na povorote rusla.” Ruslovoj process na rekah i putevye raboty dlya sudohodstva i povyshenie effektivnosti raboty gidrotekhnicheskih sooruzhenij (Sb. Trudov LIVTa), 1985: 185–191.

12. ZHuravlev M. V. “Laboratornye issledovaniya gidravlicheskogo soprotivleniya rechnyh izvilin.” Sovershen stvovanie tekhnicheskoj ekspluatacii, proektirovaniya i rascheta gidrotekhnicheskih sooruzhenij i tekhnologii putevyh rabot na rekah (Sb. Trudov LIVTa), 1990: 101–106.

13. Grishanin K. V. “Kak vedet sebya rechnoj potok?” Meteorologiya i gidrologiya 9 (1984): 95–100.

14. Grishanin K. V. Osnovy dinamiki ruslovyh potokov. M.: Transport, 1990.

15. ZHuravlev M. V. “Gidravlicheskoe soprotivlenie na povorote rechnogo rusla.” Povyshenie propusknoj sposobnosti portovyh i sudohodnyh sooruzhenij (Sb. Trudov LIVTa), 1987: 184–190.

16. Gladkov G. L. “Gidravlicheskoe soprotivlenie podvizhnogo rusla pri nizkih urovnyah vody.” Izv. Vuzov. Stroitel’stvo i arhitektura 5 (1984): 86–89.

17. Hooke R. L. “Distribution of sediment transport and sear stess in a meander bend.” J. Geology 83.5 (1975): 543‒565.


Review

For citations:


Zhuravlev M.V., Gladkov G.L., Belyakov P.V. Summary of the results of field and laboratory studies of hydraulic resistance during channel bending. Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova. 2024;16(5):726-737. (In Russ.) https://doi.org/10.21821/2309-5180-2024-16-5-726-737

Views: 117


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2309-5180 (Print)
ISSN 2500-0551 (Online)