Comparative analysis of methods of hydrogen transportation by sea transport based on the criterion of specific loading capacity
https://doi.org/10.21821/2309-5180-2024-16-5-709-725
Abstract
The paper examines vessel designs and existing vessels for the transportation of hydrogen in its various aggregate states and chemically bound forms. The aim of the study is to determine the optimal method of transporting hydrogen by sea in terms of specific carrying capacity. The objective of the study was to establish the relationship between the size of the transported commercial batch of hydrogen (taking into account its form) and the technical and operational characteristics of the vessel for its transportation in relation to each of the possible methods of storing hydrogen on board. The approach used made it possible to determine the optimal options in terms of specific carrying capacity for the marine transportation of hydrogen on ships with a displacement of 25…80 thousand tons. It was determined that LPG gas carriers and chemical tankers for transporting ammonia and methanol, respectively, are optimal in terms of specific carrying capacity in the displacement range under consideration. Conceptual designs of vessels for transporting hydrogen in “pure” form (compressed or liquefied) have shown insignificant results. An intermediate position is occupied by the method of transporting hydrogen using liquid organic carriers.
About the Authors
A. S. ReutskiiRussian Federation
Reutskii Aleksandr Sergeevich — PhD, Senior Expert
7-A, Millionnaya str., Saint-Petersburg, 191181
A. S. Buyanov
Russian Federation
Buyanov Aleksandr Sergeevich — PhD, Deputy Director General
191015, Saint Petersburg, Kavalergardskaya street, 6, lit. A
A. A. Butsanets
Russian Federation
Butsanets, Artem A. — PhD, Head of the Department
5/7 Dvinskaya Str., St. Petersburg, 198035
References
1. Buyanov, A. S., Reuckij, A. S. “Formirovanie metodologicheskogo podhoda k processu opredeleniya uglerodnogo sleda transportnoj uslugi s ispol’zovaniem koefficientov energoeffektivnosti sudna.” Nauchno tekhnicheskij sbornik Rossijskogo morskogo registra sudohodstva 70/71 (2023): 13–28.
2. Buyanov, A. S., YAkimov, V. V., Reuckij, A. S. “Koefficient energoeffektivnosti kak instrumentopredeleniya uglerodnogo sleda ot raboty morskih sudov ledovyh klassov.” Nauchnotekhnicheskij sbornik Rossijskogo morskogo registra sudohodstva 72/73 (2023): 21–31.
3. Buyanov, A. S., Leonova, O. N., Reuckij, A. S. “Analiz opyta primeneniya metanola i etanola v kachestve topliva na sudah.” Nauchnotekhnicheskij sbornik Rossijskogo morskogo registra sudohodstva 64/65 (2021): 91–97.
4. Heid B. et al Five charts on hydrogen’s role in a net-zero future McKinsey & Company. Web. 20 Sept. 2023 .
5. Berger RProsperity at Risk: For a New Strategy in Energy Policy / R. Berger et al. (2022): 1–7.
6. Di Lullo, Giovanni, et al. “Large-scale long-distance land-based hydrogen transportation systems: A comparative techno-economic and greenhouse gas emission assessment.” International Journal of Hydrogen Energy 47.83 (2022): 35293–35319.
7. SHamraj F. A. “Dostupnye segodnya tekhnologii hraneniya i transportirovki vodoroda.” Delovoj zhurnal NEFTEGAZ.RU 11 (2022): 50‒55.
8. Makaryan, I. A., Sedov, I. V., Maksimov, A. L. “Hranenie vodoroda s ispol’zovaniem zhidkih organicheskih nositelej (obzor).” ZHurnal prikladnoj himii 93.12 (2020): 1716‒1733.
9. Buyanov, A. S. “Metody ocenki stoimosti perevozki gruzov morskim transportom v usloviyah ogranichennogo informacionnogo obespecheniya.” Transport Rossijskoj Federacii 3(94) (2021): 22–27.
10. Vlas’ev, M. V., Demeshko, G. F. “Formirovanie morskoj transportno-tekhnologicheskoj sistemy perevozki szhatogo prirodnogo gaza (CNG-tekhnologiya).” Trudy Krylovskogo gosudarstvennogo nauchnogo centra Spec. vyp. 2 (2018): 160–168.
11. Safarova, E. A., Filippova, D. S., Stolyarov, V. E. “Osobennosti ekspluatacii ob”ektov podzemnogo hraneniya gaza pri sovmestnom hranenii metana i vodoroda.” Nauchnyj zhurnal Rossijskogo gazovogo obshchestva 3 (2021): 58–63.
12. Abe, A. “Studies of the large scale transportation of the liquid Hydrogen.” Proceedings of the 11th World Hydrogen Energy Conference 2 (1996): 1145–1154.
13. Kamiya, S., Nishimura, M., Harada, E. “Study on introduction of CO2 free energy to Japan with liquid hydrogen.” Physics Procedia 67 (2015): 11–19.
14. Alkhaledi, A. N., Sampath, S., Pilidis, P. “A hydrogen fuelled LH2 tanker ship design.” Ships and Offshore Structures 17.7 (2022): 1555–1564.
15. Modisha, P. M. et al “The prospect of hydrogen storage using liquid organic hydrogen carriers.” Energy & fuels 33.4 (2019): 2778–2796.
16. Abdin Z. “Large-scale stationary hydrogen storage via liquid organic hydrogen carriers.” Iscience 24.9 (2021): 1–23.
17. Mezhdunarodnyj Kodeks postrojki i oborudovaniya sudov, perevozyashchih opasnye himicheskie gruzy nalivom (Kodeks MKKH). SPb.: ZAO «CNIIMF», 1997.
18. Mezhdunarodnaya Konvenciya po predotvrashcheniyu zagryazneniya s sudov (MARPOL 73/78). Prilozhenie II: Pravila predotvrashcheniya zagryazneniya vrednymi veshchestvami, perevozimymi nalivom. SPb.: AO «CNIIMF», 2017.
Review
For citations:
Reutskii A.S., Buyanov A.S., Butsanets A.A. Comparative analysis of methods of hydrogen transportation by sea transport based on the criterion of specific loading capacity. Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova. 2024;16(5):709-725. (In Russ.) https://doi.org/10.21821/2309-5180-2024-16-5-709-725