Preview

Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova

Advanced search

MATHEMATICAL MODEL OF THE NAVIGATIONAL CELESTIAL BODIES MOTION ON THE CELESTIAL SPHERE

https://doi.org/10.21821/2309-5180-2020-12-1-35-45

Abstract

Currently, in the Russian part of the shipping industry, when solving the tasks of nautical astronomy, a printed edition of the Nautical Astronomical Almanac (NAY, in Russian), every year produced by the Institute of Applied Astronomy of the Russian Academy of Sciences, is used. In the context of the digital technologies development, there is a need to create its digital analogue, capable to automatically calculate the spherical coordinates of the bodies and other navigation parameters at any given time. In the process of performing this work, a number of mathematical theories and algorithms that are necessary to implement the digital analogue of the Marine Astronomical Yearbook are analyzed. In the paper, a method for calculating the equatorial coordinates of the navigational celestial bodies (Sun, Moon, navigational stars and Venus, Mars, Jupiter and Saturn planets) for any given time is described. For the algorithm for calculating the equatorial coordinates of the navigational stars, the principles of taking into account the precession and nutation of the Earth axis, as well as aberrations, are described. Optimal numerical theories of motion (planetary theories) are selected to calculate the ecliptic coordinates of the planets, and their use is described directly for calculating the equatorial coordinates. The expansion of planetary theory DE200 proposed by J. Chapront and the theory of Variations Séculaires des Orbites Planétaires 87 proposed by P. Bretagnon are considered. A generalized set of algorithms based on the theories of the moon motion, which is necessary to calculate the equatorial coordinates of this celestial body, is considered. As a result of the analysis, the structure of the mathematical model is formed. It will form the basis of the developed «Astronomical Almanac» software, which will be an improved version of the Marine Astronomical Yearbook.

About the Authors

S. V. Kozik
Admiral Makarov State University of Maritime and Inland Shipping
Russian Federation


A. A. Denisova
Admiral Makarov State University of Maritime and Inland Shipping
Russian Federation


G. O. Alcybeev
Admiral Makarov State University of Maritime and Inland Shipping
Russian Federation


References

1. Международная конвенция о подготовке и дипломировании моряков и несении вахты 1978 года (ПДМНВ-78) с поправками. - СПб.: ЗАО «ЦНИИМФ», 2010. - 806 с.

2. Гагарский Д. А. Отношение к мореходной астрономии в современном судовождении / Д. А. Гагарский // Материалы научно-практической конференции «Морское образование: традиции, реалии и перспективы». - СПб.: ГУМРФ имени адмирала С. О. Макарова, 2015. - С. 50-56.

3. Леонов В. Е. Анализ морских пособий, применяемых для определения места судна по наблюдениям Солнца / В. Е. Леонов, И. В. Сокол, А. С. Лазарь // Навигация и гидрография. - 2015. - № 14. - С. 42-46.

4. Панасенко А. Н. Об использовании иностранных таблиц для решения задач мореходной астрономии / А. Н. Панасенко // Вестник Морского государственного университета. - 2013. - № 62. - С. 92-98.

5. Алцыбеев Г. О. Математические методы получения астронавигационных параметров / Г. О. Алцыбеев // Современное развитие России через призму научных исследований. - 2018. - С. 30-34.

6. Lieske J. H. Expressions for the Precession Quantities Based upon the IAU (1976) System of Astronomical Constants / J. H. Lieske, T. Lederle, W. Fricke, B. Morando // Astronomy and Astrohysics. - 1977. - Vol. 58. - Pp. 1-16.

7. Астрономический ежегодник СССР на 1986 год. - Л.: Наука, 1984. - Т. 65. - 691 с.

8. Хлюстин Б. П. Мореходная астрономия: учеб. пособие вузов: в 2 ч. / Б. П. Хлюстин. - М.: Изд-во, 2018. - Ч. 1. - 267 с.

9. Tonry J. The ATLAS All-Sky Stellar Reference Catalog / J.L. Tonry, L. Denneau, H. Flewelling, N. Heinze, C. A. Onken, S. J. Smartt, B. Stalder, H. J. Weiland, C. Wolf // The Astrophysical Journal. - 2018. - Vol. 867. - Is. 2. - Pp. 105. DOI: 10.3847/1538-4357/aae386.

10. Алцыбеев Г. О. Применение численных теорий движения планет в задачах мореходной астрономии / Г. О. Алцыбеев, А. Р. Юрченко // Вестник современных исследований. - 2019. - № 1.2 (28). - С. 5-7.

11. Питьева Е. В. Повышение точности фундаментальных эфемерид планет EPM / Е. В. Питьева, Д. А. Павлов, В. И. Скрипниченко // Труды Института прикладной астрономии РАН. - 2016. - № 36. - С. 41-48.

12. Bretagnon P. Planetary theories in rectangular and spherical variables-VSOP 87 solutions / P. Bretagnon, Francou // Astronomy and Astrophysics. - 1988. - Vol. 202. - Pp. 309-315.

13. Chapront J. Representation of planetary ephemerides by frequency analysis. Application to the five outer planets / J. Chapront // Astronomy and Astrophysics Supplement Series. - 1995. - Vol. 109. - Pp. 181-192.

14. Feng G. Infrared Radiation Modeling of Planets Based on VSOP87 Theory / G. Feng, X. Xiaojian // Journal of System Simulation. - 2015. - № 3. - С. 28.


Review

For citations:


Kozik S.V., Denisova A.A., Alcybeev G.O. MATHEMATICAL MODEL OF THE NAVIGATIONAL CELESTIAL BODIES MOTION ON THE CELESTIAL SPHERE. Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova. 2020;12(1):35-45. (In Russ.) https://doi.org/10.21821/2309-5180-2020-12-1-35-45

Views: 273


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2309-5180 (Print)
ISSN 2500-0551 (Online)