Dynamics of change in the polytropic exponent in the expansion stroke of diesel
https://doi.org/10.21821/2309-5180-2024-16-4-567-578
Abstract
In the article is considered the problem of achieving the optimal duration of the working stroke of a diesel engine piston during the expansion process and obtaining the maximum efficiency coefficient (EC). For this purpose, a hypothesis was put forward about the pumping action of the piston on the flow of expanding gases during the power stroke of an diesel internal combustion engine (ICE) as the piston moves from upper dead point (UDP) to bottom dead point (BDP).At a certain moment of expansion, the rate of the flow of expanding gases turns out to be equal to the rate with which the same flow is slowed down by the moving piston.The equality of these rates leads to the formation of a flow break line and has a significant impact on the nature of the change in the polytropic exponent; the value of the exponent becomes equal to one: n = 1. This indicates that the optimum duration of the engine’s working stroke has been achieved and corresponds to the maximum power that can be removed during the diesel engine’s operating cycle. An experimental relation was obtained between the initial p1 and final p2 pressures in the cylinder during gas expansion with the gas flow rate and the rate of deceleration of this flow due to the pumping action of the piston. An equation for the continuity of gas flow has been compiled for the process of gas expansion in the cylinder of an ICE with closed gas exchange organs. Based on this equation, the numericalvalue of the acceleration of gravity in the cylinder of ICE is obtained: gф ≈ 8,7 м/с2 < g, which confirms the pumping action of the piston. A theoretical (and graphical) dependence of the polytropic process exponent on the flow rate of expanding gases is obtained. The dependence allows to calculate the polytropic exponent and establish the gas relaxation period, indicating the achievement of the optimal duration of the piston stroke.
About the Authors
V. P. LitvinenkoDNR
Litvinenko, Vladimir P. — PhD, associate professor
19 Chernomorskaya Str., Mariupol, 287500
N. A. Savinkov
DNR
Savinkov, NikolayA. — PhD, associate professor
19 Chernomorskaya Str., Mariupol, 287500
References
1. Shevtsov, Yu. D., A. D. Nirov, L. N. Dudnik, and M. M. Zhuravlev. “Investigation of the internal combustion engine thermal balance for the development of intelligent control systems in vehicle engines.”Scientific Works of the Kuban State Technological University6 (2023): 63–77.
2. Smolenskii, V., N. Smolenskaya, and D. Pavlov. “Features changes polytropic exponent in ice on idling.” Izvestiya Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk 18.4–5 (2016): 938–943.
3. Yeryganov, A. V., and R. A. Varbanets. “Determination of diesel compression ratio by results by the process indexing.” Vestnik of Astrakhan State Technical University. Series: Marine engineering and technologies 1 (2017): 44–49.
4. Kochergin, Victor I., Sergei P. Glushkov, and Evgenii S. Zinchenko. “Using the thermodynamic processes features to assess the diesel power plants technical condition.” Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova 16.1 (2024): 141–153. DOI: 10.21821/2309-5180-2024-16-1-141-153.
5. Vedruchenko, V. R., V. V. Krainov, E. S. Lazarev, and P. V. Litvinov. “The indication as method for adjusting and diagnostics of diesel engine working process parameters.”Omsk Scientific Bulletin 2(152) (2017):40–44.
6. Ispol’zovanie pokazatelya politropy protsessa rasshireniya gazov v tsilindre sudovogo dizelya v kachestve diagnosticheskogo parametra. Web. 1May 2024.
7. Orlik, A. S., M. G. Kruglov, S. I. Efimov, et al. Dvigateli vnutrennego sgoraniya: cistemy porshnevykh i kombinirovannykh dvigatelei. Edited by A. S. Orlik, and M. G. Kruglov. M.: Mashinostroenie, 1985.
8. Sharoglazov, B. A., M. F. Farafontov, and V. V. Klement’ev. Dvigateli vnutrennego sgoraniya: teoriya, modelirovanie i raschet protsessov. Chelyabinsk: Izd-vo Yuzhno-Ural’skogo gos. un-ta, 2004.
9. Gushchin, A. M., E. V. Ryabko, A. V. Satsuk, and A. A. Bondar. “Automation of the calculation of polytropic indicators in the cylinders of a diesel engine”.Collection of scientific papers of the Donetsk Railway Transport Institute 58 (2020): 78–83.
10. Tsirlin, A. M. Zadachi i rezul’taty optimizatsionnoi termodinamiki. M.: Direkt-Media, 2015.
11. Rozoner, L. I., and A. M. Tsirlin. “Optimal’noe upravlenie termodinamicheskimi protsessami.” Avtomatika i telemekhanika 1 (1983): 70–79.
12. Belokon’, N. I. Termodinamika. M.: Gosudarstvennoe energeticheskoe izd-vo, 1954.
13. Kirillin, V. A., V. V. Sychev, and A. E. Sheindlin. Tekhnicheskaya termodinamika: uchebnik dlya vuzov. M.: Izdatel’skii dom MEI, 2016.
14. Sedov, L. I. Mekhanika sploshnoi sredy. Vol. 1. M.: Nauka, 1970.
15. Babaelahi, Mojtaba, and Hoseyn Sayyaadi. “A new thermal model based on polytropic numerical simulation of Stirling engines.” Applied Energy 141 (2015): 143–159. DOI: 10.1016/j.apenergy.2014.12.033.
16. Gushchin, A. M., E. V. Ryabko, and A. A. Bondar. “Research of the polytropic process in the cylinder of combustion engine.”Collection of scientific papers of the Donetsk Railway Transport Institute 52 (2019): 91–98.
17. Tolmacheva, A.V., and G. I. Grigor’ev. “Politropicheskie protsessy v nizhnei termosfere.” Khimicheskaya fizika 40.5 (2021): 91–98. DOI: 10.31857/S0207401X21050125.
18. Abakumov, M. V., S. I. Mukhin, Yu. P. Popov, and D. V. Rogozhkin. “Rarefaction shock waves in gas dynamics numerical solutions.” Mathematical Models and Computer Simulations 20.1 (2008): 48–61.
19. Belonuchkin, V. E. Kratkii kurs termodinamiki. M.: MFTI, 2010.
20. Vansheidt, V. A., N. N. Ivanchenko, L. K. Kollerov, eds. Dizeli: Spravochnik. L.: Mashinostroenie, 1977.
21. Kvasnikov, I. A. Termodinamika i statisticheskaya fiziki. Vol.1. Teoriya ravnovesnykh sistem. M.: Editorial, URSS, 2002.
22. Andrusenko, S. E., O. E. Andrusenko, V. V. Kolyvanov, and Yu. I. Matveev. “Work process control mechanisms of diesel engine.” Russian Journal of Water Transport 68 (2021): 98–108. DOI: 10.37890/jwt.v68.206.
23. Litvinenko, V. P. “Conceptual evaluation of the results of research on optimization of thermal energy conversion in marine diesel engines operating on a combined cycle.”Energeticheskie ustanovki i tekhnologii 9.2 (2023): 16–25.
24. Kruglov, M. G., and A. A. Mednov. Gazovaya dinamika kombinirovannykh dvigatelei vnutrennego sgoraniya: uchebnoe posobie. M.: Mashinostroenie, 1988.
Review
For citations:
Litvinenko V.P., Savinkov N.A. Dynamics of change in the polytropic exponent in the expansion stroke of diesel. Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova. 2024;16(4):567-578. (In Russ.) https://doi.org/10.21821/2309-5180-2024-16-4-567-578