Simulation model of prestacking at the seaport container terminal
https://doi.org/10.21821/2309-5180-2024-16-3-379-390
Abstract
Automation and digitalization of both the entire process and components of technological operations of the terminal are one of the conditions for the balanced development of the port infrastructure of the Russian Federation. Container transshipment in the warehouse area is the most labor-intensive and frequently performed auxiliary operation of the technological process of any container terminal. That is why development of advanced driver assistance systems for mobile reloading equipment based on a digital twin of this operation is in high demand from the point of view of the terminal digitalization. The object of the study is the technological process of containers transshipment in the operating areas of the terminal with formation of auxiliary stacks to speed up the transfer of goods by the different transport means, as well as carrying out other auxiliary operations. The reloader performs the operation of partially dismantling the operational stack with removal from it of a certain number of target containers that make up the logistics flow of cargo moved to the auxiliary stack with the subsequent return of the blocking containers back to their previous stacks of the operational stack. The research method is the modeling of scenarios depending on the sequence of possible states of the simulated technological process. The used mathematical apparatus is automatic programming. The modeling tools are deterministic finite state machine. The main goal of developing the model is to convert the loader control function when performing a selective search operation for containers in an operational stack into a digital code, i. e. mapping the sequence of its possible states into a sequence of characters in the control line of the machine. The result of the study is a digital simulation model of the operation of selective removal of containers from the operational stack with implementation of the work scheme based on the principle of complete disassembly of blocking stacks and removal of containers only from the nearest row, as well as proof of the adequacy of the transition diagram of the finite state machine to the functioning mechanism of the simulated operation. The virtual environment of the automated control system for a mobile loader operating in the rear zone is the place where the digital model of selective removal of containers is used in the architecture of the digital twin of the container terminal. The main advantage of using this version of the finite state machine as an element of the automated control system is that there is no need to urgently interrupt the technological process to adjust operation of the loader at work positions.
About the Authors
T. E. MalikovaRussian Federation
Malikova, Tatiana E. — Dr. of Technical Sciences, associate professor
50a Verkhneportovaya Str., Vladivostok, 690059
E. E. Petrova
Russian Federation
Petrova, Ekaterina E. — Senior Lecturer
52-В Lugovaya Str., Vladivostok, 690087
References
1. Transportnaya strategiya Rossiiskoi Federatsii do 2030 goda s prognozom na period do 2035 goda. Web. 6 Oct. 2023 <https://docs.cntd.ru/document/727294161>.
2. Kuznetsov, Aleksandr L., Aleksandr V. Kirichenko, Anton D. Semenov, and Anna A. Radchenko. “Planning simulation experiments in problems of studying operational strategies of container terminals.” Vestnik of Astrakhan State Technical University. Series: Marine engineering and technologies 4 (2020): 105–112. DOI: 10.24143/2073-1574-2020-4-105-112.
3. Malikova, T.E. “Organizatsiya tamozhennogo kontrolya na konteinernykh terminalakh v morskikh punktakh propuska.” Problemy transporta Dal’nego Vostoka. Doklady desyatoi yubileinoi mezhdunarodnoi nauchno-prakticheskoi konferentsii. Vladivostok: DVO RAT, 2013. 81–83.
4. Kuznetsov, Aleksandr L., Aleksandr V. Galin, and German B. Popov. “Discrete-event modelling of container terminal cargo fronts.” Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova 15.4 (2023): 589–602. DOI: 10.21821/2309-5180-2023-15-4-589-602.
5. Korol, Roman G., and Andrey S. Akeliev. “Designing a dynamic simulation model of a multimodal transport and logistics system of the Far East.” Transport of the Asia-Pacific Region 4(37) (2023): 43–50.
6. Eglit, Ya. Ya., O. Yu. Ogaltcova, A. V. Andorskaya, and M. A. Shapovalova. “Digitalization of container transportation and its impact on logistics.” Sistemnyi analiz i logistika 4(22) (2019): 40–46.
7. Zhou, Pengfei, Li Lin, and Kap Hwan Kim. “Anisotropic Q-learning and waiting estimation based realtime routing for automated guided vehicles at container terminals.” Journal of Heuristics 29 (2023): 207–228. DOI: https://doi.org/10.1007/s10732-020-09463-9.
8. Cuong, Truong Ngoc, Hwan-Seong Kim, Xiao Xu, and Sam-Sang You. “Container throughput analysis and seaport operations management using nonlinear control synthesis.” Applied Mathematical Modelling 100 (2021): 320–341. DOI: 10.1016/j.apm.2021.07.039.
9. Yu, Hang, Yiyun Deng, Leijie Zhang, Xin Xiao, and Caimao Tan. “Yard operations and management in automated container terminals: A review.” Sustainability 14.6 (2022): 3419. DOI: 10.3390/su14063419. 10. Timoshek, E.S., and T. E. Malikova. “Analytical review of models and methods in fleet management.” Ekspluatatsiya morskogo transporta 4(101) (2021): 38–51. DOI 10.34046/aumsuomtl01/7.
10. Solovyova, Ekaterina E. “Optimization of operation of rear cargo fronts of sea container terminals: technological aspect.” Aktual’nye problemy razvitiya sudohodstva i transporta: Materialy Nacional’noj nauchnotekhnicheskoj konferencii s mezhdunarodnym uchastiem. Vladivostok: Dal’nevostochnyj gosudarstvennyj tekhnicheskij rybohozyajstvennyj universitet, 2022. 146–153.
11. Kuznetsov, Aleksandr L., Anton D. Semionov, and Hannu Oja. “Influence of a cargo plan on port operations.” Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova 13.2 (2021): 157–168. DOI: 10.21821/2309-5180-2021-13-2-157-168.
12. Soloveva, E.E. “Research of approaches in the algorithms development for managing an automated system for organizing the search and seizure of containers.” Tekhnicheskaya ekspluataciya vodnogo transporta: problemy i puti razvitiya: Materialy Pyatoj mezhdunarodnoj nauchno-tekhnicheskoj konferencii. Petropavlovsk-Kamchatskij: Kamchatskij gosudarstvennyj tekhnicheskij universitet, 2022. 70–74.
13. Kuznetsov, Aleksandr L., Anton D. Semenov, and Albert Z. Borevich. “Analysis of optimization container stacking strategies.” Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova 11.5 (2019): 803–812. DOI: 10.21821/2309-5180-2019-11-5-803-812.
14. Kuznetsov, Aleksandr L., Anton D. Semenov, and Anna А. Radchenko. “Box selectivity in different container cargo-handling systems.” Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova 12.4 (2020): 672–682. DOI: 10.21821/2309-5180-2020-12-4-672-682.
15. Grieves, Michael. Digital twin: manufacturing excellence through virtual factory replication. 2014. Web. 6 Oct. 2023 <https://www.researchgate.net/publication/275211047_Digital_Twin_Manufacturing_Excellence_through_Virtual_Factory_Replication>.
16. Radochinskaia, A. Zh., and T. E. Malikova. “The model of a subsidiary container stack formation for customs purposes using finite-state machine description language.” Ekspluatatsiya morskogo transporta 2(99) (2021): 59–66.
17. Malikova, T.E., E. E. Soloveva, and A. Zh. Radochinskaia. “Deterministic finite state machine for search of containers in stack.” Ekspluatatsiya morskogo transporta 4(105) (2022): 91–100.
18. Solovieva, E.E., and T. E. Malikova. “The algorithm for controlling the loader operations when selecting containers from the marine terminal operational stack.” Volnovaya elektronika i infokommunikatsionnye sistemy: Sbornik statei XXVI Mezhdunarodnaya nauchnaya konferentsiya. Vol. 3. SPb.: Sankt-Peterburgskii gosudarstvennyi universitet aerokosmicheskogo priborostroeniya, 2023. 127–132.
19. Gannesen, Vitalii V., Tatiana E. Malikova, and Ekaterina E. Petrova. “Justification of the container stack unpacking technological operation scheme in the automation of the loader work cycle.” Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova 15.4 (2023): 603–616. DOI: 10.21821/2309-5180-2023-15-4-603-616.
20. Timoshek, Elena S., and Tatiana E. Malikova. “Optimization of the handling process of transport vessels on the raid by means of linear programming MATLAB.” Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova 13.6 (2021): 771–781. DOI: 10.21821/2309-5180-2021-13-6-771-781.
21. Radochinskaia, A. Zh., A. A. Yanchenko, and T. E. Malikova. “Simulation of the import bound cargo traffic processing at a container terminal in MATLAB environment.” Aerokosmicheskoe priborostroenie i ekspluatatsionnye tekhnologii: Sbornik dokladov Vtoroi Mezhdunarodnoi nauchnoi konferentsii. SPb.: Sankt-Peterburgskii gosudarstvennyi universitet aerokosmicheskogo priborostroeniya, 2021. 144–149. DOI: 10.31799/978-5–8088-1554-4–2021-2-144-149.
22. Rozov, N.V., and A. I. Martyshkin. “Overview of implement a finite state machine in various programming languages.” Fundamental’nye i prikladnye nauchnye issledovaniya: aktual’nye voprosy, dostizheniya i innovatsii: sbornik statei XXIV Mezhdunarodnoi nauchno-prakticheskoi konferentsii. Vol. 2. Penza: Nauka i Prosveshchenie (IP Gulyaev G. Yu.), 2019. 56–60.
23. Strogonov, A., S. Tsybin, and P. Gorodkov. “Proektirovanie konechnykh avtomatov s ispol’zovaniem paketov rasshireniya Stateflow i Xilinx System Generator sistemy Matlab/Simulink.” Komponenty i tekhnologii 8(169) (2015): 41–48.
Review
For citations:
Malikova T.E., Petrova E.E. Simulation model of prestacking at the seaport container terminal. Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova. 2024;16(3):379-390. (In Russ.) https://doi.org/10.21821/2309-5180-2024-16-3-379-390