Preview

Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova

Advanced search

SEARCH FOR ERRORS IN THE BASE OF NAVIGATION DATA BY THE METHOD OF SPLINE ISOSURFACE VISUALIZATION

https://doi.org/10.21821/2309-5180-2020-12-3-481-491

Abstract

It is proposed to optimize a posterior accuracy estimation of the navigation parameters cluster by spline synthesis of the isosurface of the digital array in order to search for errors in the measurement database. Structured numerical information is visualized by means of computer graphics in an evident geometric form. Reliable error detection from the base of navigation data based on the wavelet fluctuation of an erroneous geometric image is provided. Axonometric visualization of the navigation isosurface on a computer screen is based on the parallel projection method. A gallery of six display copies demonstrates the productivity of the numerical experiment. In parallel, two tables present fragments of a hypothetical base of accurate and erroneous data. The essence of the performed test is to artificially initiate two errors simulated by manual correction of the digital data file. Detected graphical improvisations of errors can be operatively corrected in the numeric data file, since the approximate segment of the tabular errors presence sets their geometric image. The absence of peaks on the computer display guarantees synchronous absence of errors in the database and in this case there is no need to carry out search activities. In order to implement the practical possibility of manipulating the synthesized isosurface, four coefficients for controlling the shape of the geometry of the engineered electronic perspective are introduced into the software module. Variation of one of the four coefficients assists to conduct the further analyzing the measurement data in order to distinguish the heterogeneity of digital values from their error. The proposed approach allows you to obtain a compromise solution if it is impossible to formulate formal criteria for fuzzy logic of searching for errors in the database. Based on empirical analysis, an expert assessment of the accuracy of any base of navigation data is performed.

About the Author

I. V. Yuyukin
Admiral Makarov State University of Maritime and Inland Shipping
Russian Federation


References

1. Palominos F. E. Improve efficiency in multidimensional database queries through the use of additives aggregation functions / F. E. Palominos, C. Duran, F. M. Cordova // Procedia Computer Science. - 2019. - Vol. 162. - Pp. 754-761. DOI: 10.1016/j.procs.2019.12.047.

2. Davis A. L. Modern Programming Made Easy: Using Java, Scala, Groovy, and JavaScript / A. L. Davis. - Second edition. - Berkeley: Apress, 2020. - 193 p. DOI: 10.1007/978-1-4842-5569-8.

3. Sciore E. Database Design and Implementation / E. Sciore. - Second Edition. - Cham: Springer International Publishing, 2020. - 458 p. DOI: 10.1007/978-3-030-33836-7.

4. Романова И. К. Сравнительный анализ и модификации методов визуализации в параметрических исследованиях систем управления / И.К. Романова // Наука и образование: научное издание МГТУ им. Н. Э. Баумана. - 2017. - № 1. - С. 50-76. DOI: 10.7463/0117.0000926.

5. Dawson C. A-Z of Digital Research Methods / C. Dawson. - London: Routledge, 2019. - 414 p. DOI: 10.4324/9781351044677.

6. Dahiya N. Efficient Materialized View Selection for Multi-Dimensional Data Cube Models / N. Dahiya, V. Bhatnagar, M. Singh // International Journal of Information Retrieval Research. - 2016. - Vol. 6. - Is. 3. - Pp. 52-74. DOI: 10.4018/IJIRR.2016070104.

7. Bylysheva L. A new approach for image database design / L. Bylysheva, J. Jones, Z. Bi // Information Technology and Management. - 2017. - Vol. 18. - Pp. 97-105. DOI: 10.1007/s10799-015-0224-6.

8. Unwin A. Why is Data Visualization important? What is Important in Data Visualization? / A. Unwin // Harvard Data Science Review. - 2020. - Vol. 2. - № 1. - Pp. 1-7. DOI: 10.1162/99608f92.8ae4d525.

9. Ююкин И. В. Аппроксимация геоида методами сплайн-функций / И. В. Ююкин // Вестник Государственного университета морского и речного флота имени адмирала С. О. Макарова. - 2020. - Т. 12. - № 2. - С. 262-271. DOI: 10.21821/2309-5180-2020-12-2-262-271.

10. Песков Ю. А. Морская навигация с ГЛОНАСС/GPS / Ю. А. Песков. - М.: Моркнига, 2010. - 148 с.

11. Ююкин И. В. Оптимизация моделирования навигационной изоповерхности методами базисных финитных сплайнов / И. В. Ююкин // Вестник Государственного университета морского и речного флота имени адмирала С. О. Макарова. - 2019. - Т. 11. - № 2. - С. 266-274. DOI: 10.21821/2309-5180-2019-11-2-266-274.

12. Ююкин И. В. Интерполяция навигационной функции сплайном лагранжева типа / И. В. Ююкин // Вестник Государственного университета морского и речного флота имени адмирала С. О. Макарова. - 2020. - Т. 12. - № 1. - С. 57-70. DOI: 10.21821/2309-5180-2020-12-1-57-70.

13. Ююкин И. В. Модификация метода наименьших квадратов для сплайн-аппроксимации навигационной изоповерхности / И. В. Ююкин // Вестник Государственного университета морского и речного флота имени адмирала С. О. Макарова. - 2019. - Т. 11. - № 4. - С. 631-639. DOI: 10.21821/2309-5180-2019-11-4-631-639.

14. Johansson J. Evaluation of Parallel Coordinates: Overview, Categorization and Guidelines for Future Research / J. Johansson, C. Forsell // IEEE Transactions on Visualization and Computer Graphics. - 2015. - Vol. 22. - Is. 1. - Pp. 579-588. DOI: 10.1109/TVSG.2015.2466992.

15. Raidou R. G. Orientation-Enhanced Parallel Coordinate Plots / R.G. Raidou, M. Eisemann, M. Breeuwer, Eisemann, A. Vilanova // IEEE Transactions on Visualization and Computer Graphics. - 2015. - Vol. 22. - Is. 1. - Pp. 589-598. DOI: 10.1109/TVSG.2015.2467872.

16. Tuor R. Parallel Bubbles - Evaluation of Three Techniques for Representing Mixed Categorical and Continuous Data in Parallel Coordinates / R. Tuor, F. Evequoz, D. Lalanne // Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications. - Portugal, 2018. - Vol. 2. - Pp. 252-263. DOI: 10.5220/0006615602520263.

17. Isayeva E. A. The role of fluctuations in artificial intelligence from Zadeh’s fuzzy sets point of view / E.A. Isayeva // IFAC-PapersOnLine. - 2018. - Vol. 51. - Is. 30. - Pp. 812-815. DOI: 10.1016/j.ifacal.2018.11.189.

18. Chang R. Usability Guidelines for an Online Image Database / R. Chang, D.F. Bliss II, A.R. Altemus // Journal of Biocommunication. - 2019. - Vol. 43. - № 1. - Pp. 14-23. DOI: 10.5210/jbc.v43i1.7874.

19. Кондрашихин В. Т. Теория ошибок и ее применение к задачам судовождения. - М.: Транспорт, 1969. - 256 с.

20. Ююкин И. В. Сплайн-интерполяция навигационных изолиний / И. В. Ююкин // Вестник Государственного университета морского и речного флота имени адмирала С. О. Макарова. - 2019. - Т. 11. - № 6. - С. 1026-1036. DOI: 10.21821/2309-5180-2019-11-6-1026-1036.

21. Yager R. R. Decision-making with measure modeled uncertain payoffs and multiple goals / R.R. Yager // Granular Computing. - 2020. - Vol. 5. - Pp. 149-154. DOI: 10.1007/s41066-019-00203-4.

22. Gorban A. N. Piece-wise quadratic approximations of arbitrary error functions for fast and robust machine learning / A. N. Gorban, E. M. Mirkes, A. Zinovyev // Neural Networks. - 2016. - Vol. 84.- Pp. 28-38. DOI: 10.1016/j.neunet.2016.08.007.

23. Hand D. What is the Purpose of Statistical Modeling? / D. Hand // Harvard Data Science Review. - 2019. - Vol. 1. - Is 1. -Pp. 1-6. DOI: 10.1162/99608f92.4a85af74.


Review

For citations:


Yuyukin I.V. SEARCH FOR ERRORS IN THE BASE OF NAVIGATION DATA BY THE METHOD OF SPLINE ISOSURFACE VISUALIZATION. Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova. 2020;12(3):481-491. (In Russ.) https://doi.org/10.21821/2309-5180-2020-12-3-481-491

Views: 183


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2309-5180 (Print)
ISSN 2500-0551 (Online)