Preview

Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova

Advanced search

A GENERALIZED MODEL OF A VESSEL DEAD RECKONING BASED ON NEURAL NETWORKS

https://doi.org/10.21821/2309-5180-2020-12-3-423-435

Abstract

The task of predicting the vessel kinematic parameters arises in the dead reckoning mode of its track calculation. This task is solved in the framework of the traditional approach based on using the ordinary differential equations. As a rule, while constructing these equations, the difficulties arise. The difficulties result from selection of the algorithms which are used for the certain forces calculation. These algorithms are not universal, and their working ability could not be guaranteed for all sailing conditions. The task of predicting the vessel kinematic parameters can be performed as the task of approximation of multiple variables functions. Neural networks are known as universal algorithms of such approximation. In the paper, a generalized model of the vessel dead reckoning on the basis of neural networks is performed. An algorithm of its operation is performed as well. The base of the model is formed with deep neural nets which are constructed through a cascade connection between two-layered (shallow) networks. There are two types of neural networks in the structure of the model: main and auxiliary nets. The main nets predict kinematic parameters using the information about force influences on the vessel. The auxiliary nets use the information about only the ship kinematic history. The model configuration allows two modes of operation. The first mode is used when dead reckoning is performed in the usual way. The second mode is used when the reiable information from a log or (and) gyrocompass is unavailable. In the case of both sensors failure the model reproduces the vessel dynamics in the horizontal plane (with three degree of freedom) thus substituting the system of corresponding differential equations. The input signals of the main nets are formed in accordance with the configuration vector of the model. The capabilities of learning the model and its using in practice are also analysed.

About the Author

V. V. Deryabin
Admiral Makarov State University of Maritime and Inland Shipping
Russian Federation


References

1. Дерябин В. В. Модель счисления пути судна в условиях воздействия внешних факторов / В. В. Дерябин // Эксплуатация морского транспорта. - 2011. - № 1 (63). - C. 33-39.

2. Дмитриев С. П. Задачи навигации и управления при стабилизации судна на траектории: научное издание / С. П. Дмитриев, А. Е. Пелевин. - СПб.: ЦНИИ «Электроприбор», 2002. - 160 с.

3. Юдин Ю. И. Идентификация математической модели контейнеровоза проекта Arctic Container Ship ACS 650 для различных этапов швартовки / Ю. И. Юдин, С. В. Пашенцев, Б. В. Дабижа, С. О. Петров // Эксплуатация морского транспорта. - 2019. - № 3 (92). - С. 89-107. DOI: 10.34046/aumsuomt92/15.

4. Дерябин В. В. Использование нейронных сетей для стабилизации судна на траектории / В. В. Дерябин // Вестник Государственного университета морского и речного флота имени адмирала С. О. Макарова. - 2018. - Т. 10. - № 4. - С. 665-678. DOI: 10.21821/2309-5180-2018-10-4-665-678.

5. Haykin S. Neural Networks and Learning Machines / S. Haykin. - Third Edition. - New Jersey: Pearson, 2009. - 936 p.

6. Liu Z. Neural network as a function approximator and its application in solving differential equations / Liu, Y. Yang, Q. Cai // Applied Mathematics and Mechanics. - 2019. - Vol. 40. - Is. 2. - Pp. 237-248. DOI: 10.1007/s10483-019-2429-8.

7. Дерябин В. В. Обзор исследований, посвященных использованию нейросетевых технологий в судовождении / В. В. Дерябин // Вестник государственного университета морского и речного флота имени адмирала С. О. Макарова. - 2015. - № 6 (34). - С. 29-43. DOI: 10.21821/2309-5180-2015-7-6-29-43.

8. Подпорин С. А. Использование нейро-нечетких контроллеров в системах управления движением морских судов / С. А. Подпорин // Збірник наукових праць Харківського університету Повітряних Сил. - 2012. - № 4 (33). - С. 181-187.

9. Kula K. S. Model-based controller for ship track-keeping using neural network / K. S. Kula // 2015 IEEE 2nd International Conference on Cybernetics (CYBCONF). - IEEE, 2015. - Pp. 178-183. DOI: 10.1109/CYB-Conf.2015.7175928.

10. Hornik K. Some new results on neural network approximation / K. Hornik // Neural Networks. - 1993. - Vol. 6. - Is. 8. - Pp. 1069-1072. DOI: 10.1016/S0893-6080(09)80018-X.


Review

For citations:


Deryabin V.V. A GENERALIZED MODEL OF A VESSEL DEAD RECKONING BASED ON NEURAL NETWORKS. Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova. 2020;12(3):423-435. (In Russ.) https://doi.org/10.21821/2309-5180-2020-12-3-423-435

Views: 222


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2309-5180 (Print)
ISSN 2500-0551 (Online)