Assessing the possibility of changing the monitoring frequency of the residual thicknesses of the navigation locks gates elements
https://doi.org/10.21821/2309-5180-2023-15-3-437-454
Abstract
One of the main methods for monitoring the technical condition of the navigation locks gates is to determine the amount of corrosion wear of their elements using ultrasonic thickness measurement. This diagnostic operation is performed at least once every five years. In accordance with the methodology, the control requires the removal of the protective coating in the measurement area. At the same time, there is no possibility of a full restoration of the coating. The specified frequency of measurements is adopted based on the peculiarities of the maintenance of locks and the durability of protective coatings, the service life of which does not exceed 5 years. It is noted that recently, the cases of measurements with a satisfactory technical condition of the protective coating on the elements of the structures, which are being examined, have been more frequent. This circumstance indicates an increase in the service life of protective coatings and, consequently, the possibility of revising the established frequency of measurements of the residual thickness of the gates elements. In this regard, the purpose of the study is to assess the possibility of changing the timing of ultrasonic thickness measurement during primary and periodic measurements of the residual thicknesses of the gate elements, taking into account the state of the protective coating. To achieve this goal, the collection and analysis of the range of protective coatings used in the anticorrosion protection of the main and emergency repair gates of navigation locks, their service life, as well as permissible deviations in thickness for the supplied rolled metal, are carried out. It has been established that epoxy-based protective coatings are most often used as primer and top coats. The thickness of the applied coatings has increased by 2–3 times and averages 200–350 µm. Damage to coatings in the period from 5 to 10 years of operation averages about 6 % of the total surface area. In the course of the study, it has been also found that the permissible minus limit values for deviations in the thickness of the supplied rolled products can range from 0.8 to 4.2 mm, depending on the thickness of the sheet and the accuracy of its manufacture. The presence of such deviations has a particularly negative effect on the resource of small thicknesses. Additionally, the maximum average value of the corrosion rate of metal structure elements in operation is determined. The totality of the information obtained makes it possible to develop recommendations for changing the timing of the residual thicknesses measurement, ensuring the safe operation of the considered elements of mechanical equipment.
About the Authors
N. M. KsenofontovRussian Federation
Ksenofontov, Nikolay M. — PhD
5/7 Dvinskaya Str., St. Petersburg, 198035
V. N. Loshak
Russian Federation
Loshak, Vitaliy N. — Head of the Hydrotechnical Structures and Energy Service
15/B Vilenskii Lane, St. Petersburg, 191014
References
1. Shraer, L. L. Korroziya. Spravochnik. M.: Metallurgiya, 1981.
2. Vernigorova, V. N., E. V. Korolev, A. I. Eremkin, and Yu. A. Sokolova. Korroziya stroitel’nykh materialov: Monografiya. M.: Izdatel’stvo «Paleotip», 2007.
3. Gerasimenko, A. A., ed. Zashchita ot korrozii, stareniya i biopovrezhdenii mashin, oborudovaniya i sooruzhenii. Vol. 2. M: Mashinostroenie, 1987.
4. Kalinovskaya, Valeria Alexandrovna, and Darya Dmitrievna Ogurtsova. “Corrosion of metals. Methods for protecting metals from corrosion.” Science. Engineering. Technology (polytechnical bulletin) 1 (2022): 124–128.
5. Zhang, Zehui, Jin Wu, Xing Zhao, Yongsheng Zhang, Yaming Wu, Tian Su, and Huachao Deng. “Life evaluation of organic coatings on hydraulic metal structures.” Progress in Organic Coatings 148 (2020): 105848. DOI: 10.1016/j.porgcoat.2020.105848.
6. Kuz’mitskii, M. L., and N. M. Ksenofontov. “Corrosive wear of gate and valve metal structures at navigation locks and assessment of their remaining lifetime.” Power Technology and Engineering 50.2 (2016): 164–167. DOI: 10.1007/s10749–016–0677–8.
7. Dymkin, G. Ya., and V. P. Lokhov. “Eshche raz o vliyanii sherokhovatosti poverkhnosti izdeliya na rezul’taty UZK pryamymi PEP.” V mire nerazrushayushchego kontrolya 1 (2007): 25–26.
8. Kuzmin, D. A., and V. I. Baranenko. “Influence of deposits on the nature of corrosion processes and ultrasonic control of pipeline wall thickness.” Tyazheloye Mashinostroyeniye 4 (2020): 20–24.
9. Kuzmitskiy, M. L., and N. M. Ksenofontov. “On the reliability of the results of measurements of the residual thickness of the metal elements gates and valve of navigation locks in operation by the ultrasonic method.” NDT World 23.1 (2020): 40–44. DOI: 10.12737/1609-3178-2020-38-42.
10. Bulatov, A. S., and V. A. Syasko. “Modern ultrasonic methods to measure the remaining thickness of the wall of metal products under the protective coatings.” NDT World 19.3 (2016): 4–8.
11. Gan, Fangji, Lin Min, Xu Tao, and Junbi Liao. “Ultrasonic thickness measurement technique with self-calibration function.” Insight-Non-Destructive Testing and Condition Monitoring 60.11 (2018): 619–625. DOI: 10.1784/insi.2018.60.11.619.
12. Ksenofontov, N. M. Provedenie ekspertnoi otsenki tekhnicheskogo sostoyaniya osnovnykh vorot nizhnei golovy Verkhne-Svirskogo shlyuza: Tekhnicheskii otchet. SPb: FGBOU VO «GUMRF imeni admirala S. O. Makarova», 2022.
13. Ksenofontov, N. M. Provedenie ekspertnoi otsenki tekhnicheskogo sostoyaniya verkhovykh remontnykh zatvorov napolneniya i oporozhneniya vodoprovodnykh galerei Nizhne-Svirskogo shlyuza po MU 050.025–2001: Tekhnicheskii otchet. SPb: FGBOU VO «GUMRF imeni admirala S. O. Makarova», 2020.
14. Ksenofontov, N. M. Instrumental’noe obsledovanie i vypolnenie poverochnykh raschetov fakticheskoi nesushchei sposobnosti metallokonstruktsii avariino-remontnogo zatvora, i vypolnenie poverochnykh raschetov fakticheskoi nesushchei sposobnosti oboikh osnovnykh zatvorov na vkhodnom ogolovke kholostogo vodosbrosa shlyuza № 23 Samarskogo RGSiS — po rezul’tatam instrumental’nogo obsledovaniya metallokonstruktsii oboikh osnovnykh zatvorov vypolnennykh Zakazchikom: Tekhnicheskii otchet. SPb: FGBOU VO «GUMRF imeni admirala S. O. Makarova», 2020.
15. Sadovskii, G. L. Remont sudokhodnykh gidrotekhnicheskikh sooruzhenii. M.: Transport, 1973.
16. Yarustovskii, A. A. “Ekspluatatsiya i remont zatvorov i mekhanizmov.” Ekspluatatsiya gidrotekhnicheskikh sooruzhenii: sb. tr. pervoi konferentsii po ekspluatatsii sudokhodnykh gidrotekhnicheskikh sooruzhenii. M: Rechnoi transport, 1955. 83–110.
17. Huntley, Rick, and Dan Boich. “A corrosion control plan for saint lawrence seaway navigation locks.” Journal of Protective Coatings & Linings 36.11 (2019): 28–32.
18. Bod, K. Yu. Provedenie issledovanii i raschetnyi analiz fakticheskoi nesushchei sposobnosti metallokonstruktsii osnovnykh dvustvorchatykh vorot nizhnei golovy shlyuza № 1 srednikh golov shlyuzov №№ 1, 3, 13,16, avariinoremontnykh vorot shlyuza № 14, zatvorov vodospuska № 141 Khizhozerskogo gidrouzla FBU «Administratsiya «Belomorkanal» (Etap II): Otchet o NIR. Volgograd: AO «NIIES» Volgogradskii filial, 2018.
19. Bod, K. Yu. Obsledovanie metallokonstruktsii osnovnykh dvustvorchatykh vorot verkhnikh golov sudokhodnykh gidrotekhnicheskikh sooruzhenii: Tekhnicheskii otchet. Volgograd: AO «NIIES» Volgogradskii filial, 2019.
20. Bod, K. Yu. Provedenie obsledovaniya rabochikh dvustvorchatykh vorot nizhnei i verkhnei golov shlyuza № 30 Volgogradskogo gidrouzla FBU «Administratsiya «Volgo–Don» s vydachei zaklyucheniya o tekhnicheskom sostoyanii i raschetom resursa dal’neishei ekspluatatsii: Tekhnicheskii otchet. Volgograd: AO «NIIES» Volgogradskii filial, 2016.
21. Markovich, R. A., and A. V. Kolgushkin. “Korroziya morskikh gidrotekhnicheskikh sooruzhenii.” Gidrotekhnika 2 (2009): 72–75.
22. Kuchenev, V. O., A. G. Rakut’ko, and A. S. Asadchev. “Svodnaya otsenka korrozionnoi stoikosti otdel’nykh marok stali neftegazoprovodnykh trub dlya RUP “Proizvodstvennoe ob”edinenie “Belarus’neft’”.” Vestnik Gomel’skogo gosudarstvennogo tekhnicheskogo universiteta im. P. O. Sukhogo 1(80) (2020): 94–101.
23. Kolomiitsev, E.V. “Korrozionnaya stoikost’ svarnykh soedinenii sudokorpusnykh materialov.” Avtomaticheskaya svarka 4(720) (2013): 59–64.
24. Latypova, D. R., D. E. Bugai, O. R. Latypov, and V. N. Ryabukhina. “Study of the corrosion of contact steel vapors 09MN2SI/12CR18NI10TI in the process media of the column equipment.” Petroleum Engineering 18.6 (2020): 122–129. DOI: 10.17122/ngdelo 2020–6–122–129
25. Sukhotin, A. M., ed. Korroziya i zashchita khimicheskoi apparatury. Spravochnoe rukovodstvo. Tom 3. Korroziya pod deistviem teplonositelei i khladogentov. M.: Khimiya, 1970.
Review
For citations:
Ksenofontov N.M., Loshak V.N. Assessing the possibility of changing the monitoring frequency of the residual thicknesses of the navigation locks gates elements. Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova. 2023;15(3):437-454. (In Russ.) https://doi.org/10.21821/2309-5180-2023-15-3-437-454