Preview

Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova

Advanced search

Planning and control of the ship curvilinear route

https://doi.org/10.21821/2309-5180-2023-15-3-401-415

Abstract

The possibility of applying the traditional navigation parameters used in pilotage (bearing and distance), as well as their sum and difference for planning and controlling the ship curvilinear route in coastal waters is being investigated. Mathematical apparatus is based on the classical navigation methods such as the theory of isolines, the lines of position, the principles of route planning, as well as the approximation of the curvilinear route. The mathematical justification of the circle arcs, ellipse and hyperbola used as the approximation lines of both the ship curvilinear route and the control isolines is given. The methods for estimating the vessel approaching to the point of the beginning and end of the turn and for controlling the ship movement along the planned path by measuring the navigational parameters are proposed. The problems of the physical and mathematical feasibility of the route arising at the junction points of the straight and curvilinear parts of the ship route are recommended to be resolved on the principles of transition curves (clothoids), considering the maneuvering characteristics of the vessel. The main theses of the research are supported by the graphical interpretation while the given expressions are ready for practical application. The formalization of the proposed methods in both automatic navigation systems and autonomous ship control systems will allow the navigator on the bases of the configuration of the relative position of landmarks and the ship curvilinear route to solve the problems of processing relevant navigation information in coastal and congested waters more efficiently in conjunction with the traditional pilotage methods, which is especially important for advanced autonomous navigation. 

About the Authors

A. S. Vas’kov
Admiral Ushakov State Maritime University
Russian Federation

Vas’kov, Anatoliy S. — Dr. of Technical Sciences, professor

93 Lenin Ave., Novorossiysk, 353918



A. A. Mironenko
Admiral Makarov State University of Maritime and Inland Shipping
Russian Federation

Mironenko, Aleksandr A. — Dr. of Technical Sciences, associate professor

5/7 Dvinskaya Str., St. Petersburg, 198035



References

1. Azarov, M. M., V. I. Lyapin, and O. B. Kudinov. “Methods and algorithms of automatic control of ship motion at preset turning radius.” Sistemy upravleniya i obrabotki informatsii 4(35) (2016): 28–47.

2. Vas’kov, A.A. “Formirovanie traektorii dvizheniya sudna.” Izv. Vuzov. Sev.-Kavkaz. region. Tekhn. Nauki. Problemy vodnogo transp Spetsvyp (2004): 14–16.

3. Vas’kov, Anatoliy S., Aleksandr N. Shtanko, and Anna V. Eskova. “Analysis of the process of obsessing the turning of the vessel.” Marine intellectual technologies 3–1(57) (2022): 71–76. DOI: 10.37220/MIT.2022.57.3.009.

4. Vaskov, A. S., and A. A. Mironenko. “The problems of the vessel’s course alteration control.” Ekspluatatsiya morskogo transporta 3(65) (2011): 17–20.

5. Vas’kov, Anatoliy S., and Aleksandr A. Mironenko. “The ship motion control by navigational parameters and parallel indexes.” Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova 14.6 (2022): 826–836. DOI: 10.21821/2309-5180-2022-14-6-826-836.

6. Vorokhobin, I., V. Severin, and Y. Kazak. “Density distribution vectorial error turn ship.” Ekspluatatsiya morskogo transporta 3(84) (2017): 65–69.

7. Grinyak, V.M., A. V. Shulenina, L. I. Prudnikova, and A. S. Devyatisilnyi. “Ships route planning on heavy-traffic marine area.” Modeling, optimization and information technology 9.2(33) (2021). DOI: 10.26102/2310- 6018/2021.33.2.018.

8. Dovgobrod, G. M., and L. M. Klyachko. “Simplified deduction of control law providing a vehicle’s motion on a specified nonlinear path.” Gyroscopy and Navigation 3(74) (2011): 24–33.

9. Karetnikov, Vladimir V., Sergey V. Kozik, and Artem A. Butsanets. “Risks assessment of applying unmanned means of water transport in the water area.” Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova 11.6 (2019): 987–1002. DOI: 10.21821/2309-5180-2019-11-6-987-1002.

10. Korenev, Alexei S., Sergei P. Khabarov, and Andrei G. Shpectorov. “A route calculation for unmanned vessel.” Marine intellectual technologies 4–1(54) (2021): 158–165. DOI: 10.37220/MIT.2021.54.4.047.

11. Mironenko, A. A. Metodologiya formirovaniya navigatsionnoi obstanovki i programmirovaniya dvizhenii sudna. Novorossiisk: RIO GMU im. adm. F. F. Ushakova, 2016.

12. Peskov, Yu. A. Rukovodstvo po «Organizatsii mostika» dlya sudov. Vol. 1. Novorossiisk: NGMA, 2002.

13. Smolentsev, Sergey V., Dmitry V. Isakov, and Mikhail V. Solodovnichenko. “The problem of forecasting vessels trajectories in the water area.” Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova 14.1 (2022): 7–16. DOI: 10.21821/2309-5180-2022-14-1-7-16.

14. Taratynov, V. P. Sudovozhdenie v stesnennykh vodakh. M.: Transport, 1980.

15. Yuyukin, Igor V. “Optimal spline trajectory of the ship informative route in the map-aided navigation.” Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova 14.2 (2022): 230–247. DOI: 10.21821/2309-5180-2022-14-2-230-247.

16. Benedict, Knud, M. Kirchhoff, M. Gluch, S. Fischer, M. Schaub, and M. Baldauf. “Simulation-augmented methods for safe and efficient manoeuvres in harbour areas.” TransNav: International Journal on Marine Navigation and Safety of Sea Transportation 10.2 (2016): 193–201. DOI: 10.12716/1001.10.02.02.

17. Bowditch, N. American Practical Navigator. Bethesda, Maryland: National imagery and mapping agency, 2012.

18. House, D. J. Command Companion of Seamanship Techniques. London, New York: Routledge, 2011.

19. Sivriu, G., and S. Georgescu. “Planning and execution of blind pilotage and anchorage.” Constanta Maritime University Annals 14 (2010): 35–40.

20. Swift, A. I. Bridge team management. A Practical Guide. Southall, Meddlesex: O’Sullivan Printing, 2004.

21. Zhmur, Andrew A., and Vladimir A. Loginovsky. “Using a situation awareness theory in a study of grounding incident investigations.” Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova 10.6 (2018): 1200–1210. DOI: 10.21821/2309-5180-2018-10-6-1200-1210.

22. Ernstsen, J., and S. Nazir. “Human Error in Pilotage Operations.” TransNav the International Journal on Marine Navigation and Safety of Sea Transportation 12.1 (2018): 49–56. DOI: 10.12716/1001.12.01.05

23. Jurdziński, Mirosław. “Causes of Ships Groundings in Terms of Integrated Navigation Model.” Annual of Navigation 24 (2017): 119–135. DOI: 10.1515/aon 2017-0009.

24. Report on the investigation of the grounding of the ultra-large container vessel. Web. 28 Sept. 2022 .

25. Bole, A., A. Wall, and A. Norris. Radar and ARPA Manual Radar, AIS and Target Tracking for Marine Radar Users. UK, Oxford: Butterworth-Heinemann, 2013.

26. Vas’kov, A. S., and A. A. Mironenko. Osnovy geometrii zemnogo ellipsoida i kartografii v sudovozhdenii. Novorossiisk: GMU im. adm. F. F. Ushakova, 2022.

27. Morekhodnye tablitsy (MT 2000). № 9011. SPb.: GUNiO MO RF, 2002.

28. Dovgobrod, G. M. “Universal Turn Speed Meter for Sea and River Vessels.” Morskoe oborudovanie i tekhnologii 2(23) (2020): 14–16.


Review

For citations:


Vas’kov A.S., Mironenko A.A. Planning and control of the ship curvilinear route. Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova. 2023;15(3):401-415. (In Russ.) https://doi.org/10.21821/2309-5180-2023-15-3-401-415

Views: 342


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2309-5180 (Print)
ISSN 2500-0551 (Online)