Preview

Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova

Advanced search

PROPELLER SHAFTING DYNAMICS UNDER IMPULSE ACTION

https://doi.org/10.21821/2309-5180-2022-14-5-748-758

Abstract

Propeller shafts and countershafts are bent quite often on sea and river vessels. The cause of the curvature is a strong load on this node of the ship’s power plant. In addition to bending, the shafting experiences longitudinal and transverse loads with a dynamic and static component. A large number of scientific papers have been devoted to the study of the dynamics of the propeller and shafting. However, the problem has not been completely solved, and the increase in damages during the shafting operation and its intensive wear only confirm the relevance of further research in this direction. The aim of the work is to determine the dynamic forces in the shafting, which occur during impulse action due to the propeller impact on the ice. A model of a two-stage elastic rod with inert disks at the ends is presented in the paper. It allows considering different situations of dynamic impact on the shafting and propeller. The following design features such as different stiffness of the shaft sections, different speed of elastic waves of deformation (different densities and modules of elasticity on the shaft sections), reduced inertial load from the moving parts of the drive, can be taken into account in the model. It is concluded that the frequency of the main form of oscillations mainly depends on the inertial loads concentrated at the ends and the shaft rigidity. The proposed simplified model of the inertialess shaft makes it possible to determine the angles of rotation of the shaft sections with sufficient accuracy. For different sections of the stepped shaft, the dynamic torque coefficient can differ significantly.

About the Authors

Sergey N. Tsarenko
Kamchatka State Technical University
Russian Federation


Gennadiy M. Ulitin
Donetsk National Technical University
Russian Federation


Sergei Yu. Trudnev
Kamchatka State Technical University
Russian Federation


References

1. Han H. S. Estimate of the fatigue life of the propulsion shaft from torsional vibration measurement and the linear damage summation law in ships / H. S. Han, K. H. Lee, S. H. Park // Ocean Engineering. - 2015. - Vol. 107. - Pp. 212-221. DOI: 10.1016/j.oceaneng.2015.07.023.

2. Huang Q. Numerical modeling and experimental analysis on coupled torsional-longitudinal vibrations of a ship’s propeller shaft / Q. Huang, X. Yan, Y. Wang, C. Zhang, Z. Wang // Ocean Engineering. - 2017. - Vol. 136. - Pp. 272-282. DOI: 10.1016/j.oceaneng.2017.03.017.

3. Huang Q. Coupled transverse and torsional vibrations of the marine propeller shaft with multiple impact factors / Q. Huang, X. Yan, C. Zhang, H. Zhu // Ocean Engineering. - 2019. - Vol. 178. - Pp. 48-58. DOI: 10.1016/j.oceaneng.2019.02.071.

4. Murawski L. Shaft line whirling vibrations: effects of numerical assumptions on analysis results / L. Murawski // Marine Technology and SNAME News. - 2005. - Vol. 42. - Is. 2. - Pp. 53-60. DOI: 10.5957/mt1.2005.42.2.53.

5. Halyavkin A. Determination of stiffness coefficient of stern shaft bearing / A. Halyavkin, I. Razov, V. Mamontov, G. Kushner // IOP Conference Series: Earth and Environmental Science. - IOP Publishing, 2017. - Vol. 90. - Is. 1. - Pp. 012078. DOI: 10.1088/1755-1315/90/1/012078.

6. Коврижных М. Н. Расчет амплитуд свободных колебаний дискретных многомассовых систем / М. Н. Коврижных, С. С. Глушков // Научные проблемы транспорта Сибири и Дальнего Востока. - 2008. - № 2. - С. 162-164.

7. Soni T. Active vibration control of ship mounted flexible rotor-shaft-bearing system during seakeeping / T. Soni, A. S. Das, J. K. Dutt // Journal of Sound and Vibration. - 2020. - Vol. 467. - Pp. 115046. DOI: 10.1016/j.jsv.2019.115046.

8. Jee J. Design Improvement of a Viscous-Spring Damper for Controlling Torsional Vibration in a Propulsion Shafting System with an Engine Acceleration Problem /j. Jee, C. Kim, Y. Kim // Journal of Marine Science and Engineering. - 2020. - Vol. 8. - Is. 6. - Pp. 428. DOI: 10.3390/jmse8060428.

9. Тхыонг Н. М. Современное состояние вопроса о динамике судовых валопроводов (опыт Вьетнама) / Н. М. Тхыонг // Судовые энергетические установки: научн.-техн. сб. - 1998. - № 2. - С. 95-99.

10. Шевченко Ф. Л. Механика упругих деформируемых систем / Ф. Л. Шевченко. - К.: ИСИО, 1993. - Ч. 3: Динамическое воздействие нагрузок. - 186 с.

11. Филиппов А. П. Колебания механических систем / А. П. Филиппов. - Киев: Наукова думка, 1965. - 716 с.

12. Улитин Г. М. Крутильный удар бурильной колонны при заклинивании режущего инструмента / Г. М. Улитин, Ю. В. Петтик // Науковi працi Донецького нацiонального технiчного унiверситету. Серiя: Гiрнично-геологична. - 2008. - Вып. 110. - С. 104-107.

13. Царенко С. Н. Крутильные колебания стержневых конструкций с осевой неоднородностью геометрических характеристик / С. Н. Царенко // Вестник Южно-Уральского государственного университета. Серия: Математика. Механика. Физика. - 2019. - Т. 11. - № 1. - С. 50-58. DOI: 10.14529/mmph190107.

14. Царенко С. Н. Динамика валопровода гребного винта при разгонных режимах / С. Н. Царенко, А. Н. Рак, Б. Н. Безлобенко // Вестник Государственного университета морского и речного флота имени адмирала С. О. Макарова. - 2021. - Т. 13. - № 4. - С. 548-558. DOI: 10.21821/2309-5180-2021-13-4-548-558.

15. Ivanovskaya A. Mathematical Modeling of Operating Modes of Deck Equipment for Fishing Vessels / A. Ivanovskaya, V. Zhukov // Transportation Research Procedia. - 2021. - Vol. 54. - Pp. 104-110. DOI: 10.1016/j.trpro.2021.02.053.

16. Сапига В. В. Совершенствование методов анализа динамики судовых валопроводов / В. В. Сапига, А. Л. Кирюхин, П. В. Черпита // Водный транспорт. - 2014. - № 1 (19). - С. 52-61.

17. Улитин Г. М. Изгибные колебания стержня с переменной жесткостью и распределенной массой / Г. М. Улитин, С. Н. Царенко // Прикладная математика и механика. - 2015. - Т. 79. - № 6. - С. 817-823.


Review

For citations:


Tsarenko S.N., Ulitin G.M., Trudnev S.Yu. PROPELLER SHAFTING DYNAMICS UNDER IMPULSE ACTION. Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova. 2022;14(5):748-758. (In Russ.) https://doi.org/10.21821/2309-5180-2022-14-5-748-758

Views: 277


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2309-5180 (Print)
ISSN 2500-0551 (Online)