Preview

Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova

Advanced search

TRAINING A NEURAL NETWORK TO CALCULATE THE CLOSEST POINT OF APPROACH

https://doi.org/10.21821/2309-5180-2022-14-5-713-721

Abstract

The process of training a neural network on calculation of closest point of approach (CPA) between two ships, and testing its performance and accuracy is described in the paper. The architecture of the neural network, the type of input and output data, and creation of training data set are also described in the paper. Feed Forward Neural Networks with Backpropagation algorithm are used; training method is Supervised with Levenberg-Marquardt algorithm. The input data are positions, courses and speeds of vessels in a certain area, the output data are Closest Points of Approach (CPA) between them. The process of writing a script in MATLAB software environment is described. The script allows a user to generate training data with any number of vessels in an area. Comparison of the time spent on CPA calculation using formulas and using neural networks is carried out. It has been proven that when processing large data arrays, the CPA calculation with neural networks is much faster than by means of formulas. After neural networks training process and the calculations results comparison, one neural network with mean squared error of 0.21 is chosen. It can be used for CPA calculations in MATLAB-based simulations. In the future this network might become a base for a collision-avoidance neural network system, which will allow vessels to manoeuvre safely in order to avoid collisions in a certain area.

About the Author

Oleg Y. Tripolets
Admiral Makarov State University of Maritime and Inland Shipping
Russian Federation


References

1. Триполец О. Ю. Обзор существующих методов расхождения безэкипажных судов / О. Ю. Триполец // Вестник Государственного университета морского и речного флота имени адмирала С. О. Макарова. - 2021. - Т. 13. - № 4. - С. 480-495. DOI: 10.21821/2309-5180-2021-13-4-480-495.

2. Кондратьев А. И. О необходимости внедрения беспилотных судов в торговый флот России / А. И. Кондратьев, О. А. Худяков, А. Н. Попов // Транспортное дело России. - 2016. - № 6. - С. 138-140.

3. Wang Y. M. Environmental impact assessment using the evidential reasoning approach / Y. M. Wang, J. B. Yang, D. L. Xu // European Journal of Operational Research. - 2006. - Vol. 174. - Is. 3. - Pp. 1885-1913. DOI: 10.1016/j.ejor.2004.09.059.

4. Lazarowska A. Ship’s Trajectory Planning for Collision Avoidance at Sea Based on Ant Colony Optimisation // The Journal of Navigation. - 2015. - Vol. 68. - Pp. 291-307. DOI: 10.1017/S0373463314000708.

5. Naeem W. Collision avoidance of maritime vessels / W. Naeem, S. C. de Oliveira Henrique, M. Abu-Tair // Navigation and Control of Autonomous Marine Vehicles. - 2019. - Pp. 61-84. DOI: 10.1049/PBTR011E_ch3.

6. Kuwata Y. Safe Maritime Navigation with COLREGS Using Velocity Obstacles / Y. Kuwata, M. T. Wolf, D. Zarzhitsky, T. L. Huntsberger // 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. - IEEE, 2011. - Pp. 4728-4734. DOI: 10.1109/IROS.2011.6094677.

7. Benjamin M. R. Navigation of Unmanned Marine Vehicles in Accordance with the Rules of the Road / M. R. Benjamin, J. A. Curcio, J. J. Leonard, P. M. Newman // Proceedings of the 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006. - IEEE, 2006. - Pp. 3581-3587. DOI: 10.1109/ROBOT.2006.1642249.

8. Wang C. Research on intelligent collision avoidance decision-making of unmanned ship in unknown environments / C. Wang, X. Zhang, L. Cong, J. Li, J. Zhang // Evolving Systems. - 2019. - Vol. 10. - Is. 4. - Pp. 649-658. DOI: 10.1007/s12530-018-9253-9.

9. Shen H. Automatic collision avoidance of multiple ships based on deep Q-learning / H. Shen, H. Hashimoto, A. Matsuda, Y. Taniguchi, D. Terada, C. Guo // Applied Ocean Research. - 2019. - Vol. 86. - Pp. 268-288. DOI: 10.1016/j.apor.2019.02.020.

10. Sawada R. Automatic ship collision avoidance using deep reinforcement learning with LSTM in continuous action spaces / R. Sawada, K. Sato, T. Majima // Journal of Marine Science and Technology. - 2020. - Pp. 1-16. DOI: 10.1007/s00773-020-00755-0.

11. Guo S. An autonomous path planning model for unmanned ships based on deep reinforcement learning / S. Guo, X. Zhang, Y. Zheng, Y. Du // Sensors. - 2020. - Vol. 20. - Is. 2. - Pp. 426. DOI: 10.3390/s20020426.

12. Wright R. G.Intelligent autonomous ship navigation using multi-sensor modalities / R. G. Wright // TransNav: International Journal on Marine Navigation and Safety of Sea Transportation. - 2019. - Vol. 13. - No. 3. - Pp. 503-510. DOI: 10.12716/1001.13.03.03.

13. Li Y. Deep learning structure for collision avoidance planning of unmanned surface vessel / Y. Li, J. Zheng // Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment. - 2021. - Vol. 235. - Is. 2. - Pp. 511-520. DOI: 10.1177/1475090220970102.

14. Каллан Р. Основные концепции нейронных сетей / Р. Каллан. - М.: ИД «Вильямс», 2001. - 51 c.

15. Букатый В. М. Точностные характеристики метода непосредственного определения дистанции кратчайшего сближения судов по информации от АИС / В. М. Букатый, С. Ю. Морозова // Эксплуатация морского транспорта. - 2012. - № 2 (68). - С. 9-15.


Review

For citations:


Tripolets O.Y. TRAINING A NEURAL NETWORK TO CALCULATE THE CLOSEST POINT OF APPROACH. Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova. 2022;14(5):713-721. (In Russ.) https://doi.org/10.21821/2309-5180-2022-14-5-713-721

Views: 347


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2309-5180 (Print)
ISSN 2500-0551 (Online)