Preview

Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova

Advanced search

SPLINE MODEL OF GRIDDED DATA OPERATION AS A PRINCIPLE OF ELECTRONIC MAPPING SEABED TOPOGRAPHY

https://doi.org/10.21821/2309-5180-2022-14-5-656-675

Abstract

The influence of technologies of automated processing of hydrographic survey results on the potential of the human factor in the transformation of polygraphic cartographic products into digital ones is analyzed. When configuring the digital bathymetric model, the concept of the navigation surface is used as a perspective principle of automated mapping. The approach to the problem of generating bathymetric contours from measurement results in the navigation surface paradigm is construed on continuous spline interpolation of geospatial data for reasonable cartographic generalization when creating electronic cartographic products. From the theoretical positions of the spline approach, the subjectivity of the method of artificial displacement of generalized isobaths to deep-water areas is excluded when creating a safe digital model of the bottom relief, interpreted in a mathematical sense as a navigational isosurface. The principle of electronic mapping based on the use of a spline in tension as an effective approach for the process of generalizing isobaths in order to obtain a wide range of morphometric characteristics of underwater topography has been developed. The generalized line of the active depth contour is estimated in the form of algorithmic reproduction on electronic charts of the safe convexity of the isobate towards the deep-sea area due to the practical implementation of the B-spline “snake model” by analogy with the serpentine configuration of the bathymetric isoline in the form of a piecewise polynomial function. When using the spline approach, an innovative principle of electronic mapping of the underwater landscape based on operating with a set of gridded data is implemented. The latter are interpreted as the results of depth measurements with the formalization of a two-dimensional frame of fixed values of bathymetric measurements for their representation as a navigational isosurface in three-dimensional Euclidean space. The actual synthesis of the seabed topography is implemented on the basis of a proven hybrid spline model for a specific indicative test case based on the processing of experimental gridded data. Hypothetically, the possibility of intellectual assistance to the watch officer in the strategy of instant orientation in conditions of a minimum depth reserve under the keel is organized when using computer three-dimensional visualization of the topography of the underwater relief in an unaffiliated graphic environment with foreign software.

About the Author

Igor V. Yuyukin
Admiral Makarov State University of Maritime and Inland Shipping
Russian Federation


References

1. Skopelti A. Depth Contours and Coastline Generalization for Harbour and Approach Nautical Charts / A. Skopelti, L. Tsoulos, S. Pe’eri // ISPRS International Journal of Geo-Information. - 2021. - Vol. 10. - Is. 4. - Pp. 197. DOI: 10.3390/ijgi10040197.

2. Eren F. Total Vertical Uncertainty (TVU) Modeling for Topo-Bathymatric LIDAR Systems / F. Eren, J. Jung, C. E. Parrish, N. Sarkozi-Forfinski, B. R. Calder // Photogrammetric Engineering & Remote Sensing. - 2019. - Vol. 85. - Is. 8. - Pp. 585-596. DOI: 10.14358/PERS.85.8.585.

3. Skopelti A. Nautical Charts Generalization: A Pragmatic Approach / A. Skopelti, L. Tsoulos, L. Stamou, S. Pe’eri // Abstracts of the International Cartographic Association. - 2021. - Vol. 3. - Pp. 267. DOI: 10.5194/ica-abs-3-267-2021.

4. Dyer N. Label-based generalization of bathymatry data for hydrographic sounding selection / N. Dyer, C. Kastrisios, L. De Floriani // Cartography and Geographic Information Science. - 2022. - Vol. 49. - Is. 4. - Pp. 338-353. DOI: 10.1080/15230406.2021.2014974.

5. Skopelti A. Generalization of Soundings across Scales: From DTM to Harbour and Approach Nautical Charts / A. Skopelti, L. Stamou, L. Tsoulos, S. Pe’eri // ISPRS International Journal of Geo-Information. - 2020. - Vol. 9. - Is. 11. - Pp. 693. DOI: 10.3390/ijgi9110693.

6. Glang G. NOAA Harnesses Digital Technology to Improve Navigational Intelligence / G. Glang, S. Smith, D. Forsythe // Marine Technology Society Journal. - 2015. - Vol. 49. - Is. 2. - Pp. 159-166. DOI: 10.4031/MTSJ.49.2.4.

7. Bannari A. MBES-CARIS Data Validation for Bathymetric Mapping of Shallow Water in the Kingdom of Bahrein on the Arabian Gulf / A. Bannari, G. Kadhem // Remote Sensing. - 2017. - Vol. 9. - Is. 4. - Pp. 385. DOI: 10.3390/rs9040385.

8. Guilbert E. B-spline Curve Smoothing for Isobathymetric Line Generalization / E. Guilbert, H. Lin // Geographic Information Sciences. - 2005. - Vol. 11. - Is. 2. - Pp. 78-86. DOI: 10.1080/10824000509480603.

9. Miao D. Gradual generalization of nautical chart contours with a cubic B-spline snake model / D. Miao, B. Calder // 2013 OCEANS - San Diego. - IEEE, 2013. DOI: 10.23919/OCEANS.2013.6741201.

10. Guilbert E. Cartographic generalization of lines based on B-spline snake model / E. Guilbert, E. Saux // International Journal of Geographical Information Science. - 2008. - Vol. 22. -Is. 8. - Pp. 847-870. DOI: 10.1080/13658810701689846.

11. Smith S. M. The Navigation Surface: A New Database Approach to Creating Multiple Products from High-Density Surveys / S. M. Smith, L. Alexander, A. A. Armstrong // The International Hydrographic Review. - 2002. - Vol. 3. - № 2. - Pp. 12-26.

12. Calder B. R. Automatic processing of high-rate, high-density multibeam echosounder data / B. R. Calder, L. A. Mayer // Geochemistry, Geophysics, Geosystems. - 2003. - Vol. 4. - Is. 6. - Pp. 1048. DOI: 10.1029/2002GC000486.

13. Rasheed S. An Improved Gridded Bathymetric Data Set and Tidal Model for the Maldives Archipelago / S. Rasheed, S. C. Warder, Y. Plancherel, M. D. Piggott // Earth and Space Science. - 2021. - Vol. 8. - Is. 5. - Pp. e2020EA001207. DOI: 10.1029/2020EA001207.

14. Li Z. Geospatial Big Data Handling with High Performance Computing: Current Approaches and Future Directions / Z. Li // High Performance Computing for Geospatial Applications. - Springer, Cham, 2020. - Pp. 53-76. DOI: 10.1007/978-3-030-47998-5_4.

15. Ююкин И. В. Оптимизация моделирования навигационной изоповерхности методами базисных финитных сплайнов / И. В. Ююкин // Вестник Государственного университета морского и речного флота имени адмирала С. О. Макарова. - 2019. - Т. 11. - № 2. - С. 266-274. DOI: 10.21821/2309-5180-2019-11-2-266-274.

16. Dewi R. S. The application of satellite derived bathymetry for coastline mapping / R. S. Dewi, I. Sofian, Suprajaka // IOP Conference Series: Earth and Environmental Science. - IOP Publishing, 2022. - Vol. 950. - Pp. 012088. DOI: 10.1088/1755-1315/950/1/012088.

17. Dewi R. S.Integrating Multisource of Bathymetry Data for Updating Basepoint and Baseline Positions of Maritime Boundary / R. S. Dewi, T. R. N. Rachma, I. Sofian, N. Oktaviani, A. N. Safi’i, Suprajaka, A. Rimayanti, E. Artanto // Geographia Technica. - 2022. - Vol. 17. - Is. 1. - Pp. 18-32. DOI: 10.21163/GT_2022.171.02.

18. Зубченко Э. С. Навигационная поверхность - новая форма цифровой модели для представления данных съемки рельефа дна в интересах повышения безопасности мореплавания / Э. С. Зубченко // Навигация и гидрография. - 2008. - № 27. - С. 77-93.

19. Libina N. V. Methods of Processing and Analyzing Digital Elevation Models of Bottom / N. V. Libina // Oceanology. - 2022. - Vol. 62. - Is. 2. - Pp. 278-285. DOI: 10.1134/S00001437022020126.

20. Costan A. Grid Data Handling / A. Costan // Computational and Data Grids: Principles, Applications and Design. - Hershey: Information Science Reference, 2012. - Pp. 112-139. DOI: 10.4018/978-1-61350-113-9.ch005.

21. Hell B. Gridding heterogeneous bathymetric data sets with stocked continuous curvature splines in tension / B. Hell, M. Jakobsson // Marine Geophysical Research. - 2011. - Vol. 32. - Is. 4. - Pp. 493-501. DOI: 10.1007/s11001-011-9141-1.

22. Wlodarczyk-Sielicka M. Interpolating Bathymetric Big Data for an Inland Mobile Navigation System / M. Wlodarczyk-Sielicka, N. Wawrzyaniak // Information Technology and Control. - 2018. - Vol. 47. - № 2. - Pp. 338-348. DOI: 10.5755/j01.itc.47.2.19561.

23. Ююкин И. В. Применение метода сплайн-функций при компьютерной визуализации подводного рельефа / И. В. Ююкин // Вестник Государственного университета морского и речного флота имени адмирала С. О. Макарова. - 2021. - Т. 13. - № 1. - С. 64-79. DOI: 10.21821/2309-5180-2021-13-1-64-79.

24. Souri A. H. Dealing with spatial heterogeneity in pointwise-to-gridded-data comparisons / A. H. Souri, K. Chance, K. Sun, X. Liu, M. S. Johnson // Atmospheric Measurement Techniques. - 2022. - Vol. 15. - Is. 1. - Pp. 41-59. DOI: 10.5194/amt-15-41-2022.

25. Shimada K. Creation of a Gridded Dataset for the Southern Ocean with a Topographic Constraint Scheme / K. Shimada, S. Aoki, K. I. Ohshima // Journal of Atmospheric and Oceanic Technology. - 2017. - Vol. 34. - Is. 3. - Pp. 511-532. DOI: 10.1175/JTECH-D-16-0075.1.

26. Contarinis S. The Value of Marine Spatial Open Data Infrastructures - Potentials of IHO S-100 Standard to Become the Universal Maritime Data Model / S. Contarinis, A. Pallikaris, B. Nakos // Journal of Marine Science and Engineering. - 2020. - Vol. 8. - Is. 8. - Pp. 564. DOI: 10.3390/jmse8080564.

27. Ююкин И. В. Синтез кубическими сплайнами искажённой изолинии в аспекте использования дифференциального режима спутниковой навигации / И. В. Ююкин // Вестник Государственного университета морского и речного флота имени адмирала С. О. Макарова. - 2021. - Т. 13. - № 3. - С. 341-358. DOI: 10.21821/2309-5180-2021-13-3-341-358.

28. Smith W. H. F. Gridding with Continuous Curvature Splines in Tension / W.H.F. Smith, P. Wessel // Geo-physics. - 1990. - Vol. 55. - Is 3. - Pp. 293-305. DOI: 10.1190/1.1442837.

29. Bi D.-A. K. Accuracy and convergence of the curvature and normal vector discretizations for 3D static and dynamic front-tracking interfaces / D.-A.K. Bi, M. Tavares, E. Chenier, S. Vincent // Journal of Computational Physics. - 2022. - Vol. 461. - Pp. 111197. DOI: 10.1016/j.jcp.2022.111197.

30. Ююкин И. В. Поиск ошибок в базе навигационных данных методом визуализации сплайновой изоповерхности / И. В. Ююкин // Вестник Государственного университета морского и речного флота имени адмирала С. О. Макарова. - 2020. - Т. 12. - № 3. - С. 481-491. DOI: 10.21821/2309-5180-2020-12-3-481-491.

31. Segeth K. Some splines produced by smooth interpolation / K. Segeth // Applied Mathematics and Computation. - 2018. - Vol. 319. - Pp. 387-394. DOI: 10.1016/j.amc.2017.04.022.

32. Davydov O. A tension approach to controlling the shape of cubic spline surfaces on FVS triangulations / O. Davydov, C. Manni // Journal of Computational and Applied Mathematics. - 2010. - Vol. 233. - Is. 7. - Pp. 1674-1684. DOI: 10.1016/j.cam.2009.02.099.

33. Ююкин И. В. Интерполяция навигационной функции сплайном лагранжева типа / И. В. Ююкин // Вестник Государственного университета морского и речного флота имени адмирала С. О. Макарова. - 2020. - Т. 12. - № 1. - С. 57-70. DOI: 10.21821/2309-5180-2020-12-1-57-70.

34. Guilbert E. B-Spline Curve Smoothing under Position Constraints for Line Generalization / E. Guilbert, H. Lin // Proceedings of the 14th annual ACM International Symposium on Advances in Geographic Information Systems (GIS’06). - ACM, 2006. - Pp. 3-10. DOI: 10.1145/1183471.1183474.

35. Weatherall P. A new digital bathymetric model of the world’s ocean / P. Weatherall, K. M. Marks, M. Jakobsson, T. Schmitt, S. Tani, J. E. Arndt, M. Rovere, D. Chayes, V. Ferrini, R. Wigley // Earth and Space Science. - 2015. - Vol. 2. - Is. 8. - Pp. 331-345. DOI: 10.1029/2015EA000107.

36. Ююкин И. В. Сплайновое синтезирование картографированного эталона информативности поля в задаче корреляционно-экстремальной навигации / И. В. Ююкин // Вестник Государственного университета морского и речного флота имени адмирала С. О. Макарова. - 2022. - Т. 14. - № 1. - С. 25-39. DOI: 10.21821/2309-5180-2022-14-1-25-39.

37. Li X. Smooth and collision-free trajectory generation in cluttered environments using cubic B-spline form / X. Li, X. Gao, Z. Wei, L. Hao // Mechanism and Machine Theory. - 2022. - Vol. 169. - Pp. 104606. DOI: 10.1016/j.mechmachtheory.2021.104606.

38. Ammad M. Cubic B-spline curve interpolation with arbitary derivatives on its data points / M. Ammad, A. Ramli // 2019 23rd International Conference in Information Visualization - Part II. - IEEE, 2019. - Pp. 156-159. DOI: 10.1109/IV-2.2019.00038.

39. Ююкин И. В. Сплайн-интерполяция навигационных изолиний / И. В. Ююкин // Вестник Государственного университета морского и речного флота имени адмирала С. О. Макарова. - 2019. - Т. 11. - № 6. - С. 1026-1036. DOI: 10.21821/2309-5180-2019-11-6-1026-1036.

40. Balta C. Dynamic Centripetal Parametrization Method for B-spline Curve Interpolation / C. Balta, S. Ozturk, M. Kuncan, I. Kandilli // IEEE Access. - 2019. - Vol. 8. - Pp. 589-598. DOI: 10.1109/ ACCESS.2019.2961412.

41. Barrera D. On nonpolynomial monotonicity-preserving C1 spline interpolation / D. Barrera, S. Eddargani, A. Lamnii, M. Oraiche // Computational and Mathematical Methods. - 2021. - Vol. 3. - Is. 4. - Pp. e1160. DOI: 10.1002/cmm4.1160.

42. Wang Y. Adaptive B-Snake model using shape and appearance information for object segmentation / Y. Wang, Z. Hou, X. Yang, K. Lim // International Journal for Numerical Methods in Biomedical Engineering. - 2011. - Vol. 27. - Is. 5. - Pp. 633-649. DOI: 10.1002/cnm.1410.

43. Ююкин И. В. Перспективная магнитная навигация с использованием метода сплайн-функций для оптимального формирования эталона картографирования / И. В. Ююкин // Вестник Государственного университета морского и речного флота имени адмирала С. О. Макарова. - 2022. - Т. 14. - № 4. - С. 519-534. DOI: 10.21821/2309-5180-2022-14-4-519-534.

44. Dung V. T. A direct method to solve optimal knots of B-spline curves: An application for non-uniform B-splines curves fitting / V. T. Dung, T. Tjahjowidodo // PLoS one. - 2017. - Vol. 12. - Is. 2. - Pp. e0173857. DOI: 10.1371/journal.pone.0173857.

45. Campbell B. K. An arbitrarily high-order three-dimensional Cartesian-grid method for reconstructing interfaces from volume fraction fields / B. K. Campbell // Journal of Computational Physics. - 2021. - Vol. 426. - Pp. 109727. DOI: 10.1016/j.jcp.2020.109727.

46. Calder B. R. Parallel Variable-Resolution Bathymetric Estimation with Static Load Balancing / B. R. Calder // Computers & Geosciences. - 2019. - Vol. 123. - Pp. 73-82. DOI: 10.1016/j.cageo.2018.11.011.

47. Ююкин И. В. Модификация метода наименьших квадратов для сплайн-аппроксимации навигационной изоповерхности / И. В. Ююкин // Вестник Государственного университета морского и речного флота имени адмирала С. О. Макарова. - 2019. - Т. 11. - № 4. - С. 631-639. DOI: 10.21821/2309-5180-2019-11-4-631-639.

48. Ююкин И. В. Корреляционно-экстремальная навигация по геофизическим полям на основе использования сплайновой технологии / И. В. Ююкин // Вестник Государственного университета морского и речного флота имени адмирала С. О. Макарова. - 2021. - Т. 13. - № 4. - С. 505-517. DOI: 10.21821/2309-5180-2021-13-4-505-517.

49. Xu C. Snakes, shapes, and gradient vector flow / C. Xu, J. L. Prince // IEEE Transactions on Image Processing. - 1998. - Vol. 7. - Is. 3. - Pp. 359-369. DOI: 10.1109/83.681186.

50. Xu C. Gradient Vector Flow: A New External Force for Snakes / C. Xu, J. L. Prince // Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. - IEEE, 1977. - Pp. 66-71. DOI: 10.1109/CVPR.1977.609299.

51. Chucherd S. Phase Portrait Analysis for Multiresolution Generalized Gradient Vector Flow / S. Chucherd, A. Rodtook, S. S. Makhanov // IEICE Transactions on Information and Systems. - 2010. - Vol. 93. - Is. 10. - Pp. 2822-2835. DOI: 10.1587/transinf.E93.D.2822.

52. Xu C. Gradient Vector Flow / C. Xu, J. L. Prince // Computer Vision. - Springer, Cham, 2021. - Pp. 540-546. DOI: 10.1007/978-3-030-63416-2_712.

53. Han X. A topology preserving level set method for geometric deformable models / X. Han, C. Xu, J. L. Prince // IEEE Transactions on Pattern Analysis and Machine Intelligence. - 2003. - Vol. 25. - Is. 6. - Pp. 755-768. DOI: 10. 1109/TPAMI.2003.1201824.

54. Yuyukin I. V. Configuring the fan of spline gradients when approximating the navigational isoline with a linear piecewise functional / I. V. Yuyukin // Journal of Physics: Conference Series. - IOP Publishing, 2021. - Vol. 2032. - № 1. - Pp. 012054. DOI: 10.1088/1742-6596/2032/1/012054.

55. Ююкин И. В. Оптимальная сплайн-траектория информативного маршрута судна в корреляционно-экстремальной навигации / И. В. Ююкин // Вестник Государственного университета морского и речного флота имени адмирала С. О. Макарова. - 2022. - Т. 14. - № 2. - С. 230-247. DOI: 10.21821/2309-5180-2022-14-2-230-247.


Review

For citations:


Yuyukin I.V. SPLINE MODEL OF GRIDDED DATA OPERATION AS A PRINCIPLE OF ELECTRONIC MAPPING SEABED TOPOGRAPHY. Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova. 2022;14(5):656-675. (In Russ.) https://doi.org/10.21821/2309-5180-2022-14-5-656-675

Views: 314


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2309-5180 (Print)
ISSN 2500-0551 (Online)