Preview

Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova

Advanced search

PERSPECTIVE MAGNETIC NAVIGATION WITH USING THE SPLINE FUNCTIONS METHOD FOR OPTIMAL FORMATION OF THE MAP-AIDED STANDARD

https://doi.org/10.21821/2309-5180-2022-14-4-519-534

Abstract

An analytical review of the current problems of practical use of the planetary magnetic field as a geophysical basis for navigation is provided in the paper. A hypothesis about the possibility of orientation by an individual signature of a certain geographical area has been put forward and it is based on the fact that the Earth has a measurable magnetic field in any place and at any time, which makes the contours of abnormal magnetic intensity a reliable source of navigation. The results of domestic and foreign studies on the identification of the experimental mean square error of magnetic positioning for determining coordinates with an index of 10 m are analyzed, which in the perspective creates a precedent for supplementing magnetic navigation with the reliable backup global positioning systems. It is noted that navigation by the variable mutability of the magnetic field demonstrates a high-precision positioning potential in GPS-denied environment. As a result, the point of view of the necessity to search for an alternative method is emphasized. The actuality of creating a duplicate system is motivated by the fact that the reliability of global positioning is the subject of attention when studying the issue of cybernetic awareness for the both marine and aviation applications. The innovative approach is considered in a broad aspect, taking into account the possibility of constructing an effective configuration of an artificial neural network to remove the local magnetic field of a ship or aircraft from the measuring data of a magnetometer when using a machine learning algorithm to ensure the reliability of autonomous navigation both in near-Earth space and indoors. A three-dimensional visual representation of a digital model of a simulated magnetic field based on basic finite splines is implemented in two comparative versions: an approximated perspective of magnetic anomalies and its stylized frame model with a mathematical justification of the feasibility of using different methods as optimal standards for mapping the informativeness of magnetic positioning. The planning horizon for the incorporation of spline technology into navigation information processing has been theoretically expanded to a strategy for using a gradient approach in synthesizing the heterogeneous structure of the geophysical field in order to effectively position mobile objects based on realistic consideration of the architecture of multifactor orientation of the gradient vectors spectrum.

About the Author

Igor V. Yuyukin
Admiral Makarov State University of Maritime and Inland Shipping
Russian Federation


References

1. Pasku V. Magnetic Field Based Positioning Systems / V. Pasku, A. De Angelis, G. De Angelis, D. D. Arumugam, M. Dionigi, P. Carbone, A. Moschitta, D. S. Ricketts // IEEE Communications Surveys & Tutorials. - 2017. - Vol. 19. - Is. 3. - Pp. 2003-2017. DOI: 10.1109/COMST.2017.2684087.

2. Ююкин И. В. Кибернетическая безопасность альтернативной автономной навигации с позиций сплайновой технологии / И. В. Ююкин // Вестник Государственного университета морского и речного флота имени адмирала С. О. Макарова. - 2022. - Т. 14. - № 3. - С. 346-364. DOI: 10.21821/2309-5180-2022-14-3-346-364.

3. Chakraborty A. Cooperative Relative Localization Using Range Measurements Without a Priori Information / A. Chakraborty, M. K. Brink, R. Sharma // IEEE Access. - 2020. - Vol. 8. - Pp. 205669-205684. DOI: 10.1109/ACCESS.2020.3035470.

4. Sasaki A. Effectiveness of Artificial Neural Networks for Solving Inverse Problems in Magnetic Field-Based Localization / A. Sasaki // Sensors. - 2022. - Vol. 22. - Is. 6. - Pp. 2240. DOI: 10.3390/s22062240.

5. Ююкин И. В. Навигационное использование e-Loran в модификации с методом сплайн-функций / И. В. Ююкин // Вестник Государственного университета морского и речного флота имени адмирала С. О. Макарова. - 2020. - Т. 12. - № 4. - С. 703-715. DOI: 10.21821/2309-5180-2020-12-4-703-715.

6. Blash E. Cyber Awareness Trends in Avionics / E. Blash, R. Sabatini, A. Roy, K. A. Kramer, G. Andrew, G. T. Schmidt, C. C. Insaurralde, G. Fasano // 2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC). - IEEE, 2019. - Pp. 1-8. DOI: 10.1109/DASC43569.2019.9081646.

7. Schmidt G. T. GPS Based Navigation Systems in Difficult Environments / G. T. Schmidt // Gyroscopy and Navigation. - 2019. - Vol. 10. - Is. 2. - Pp. 41-53. DOI: 10.1134/S207510871902007X.

8. Schmidt E. Software-Defined Radio GNSS Instrumentation for Spoofing Mitigation: A Review and a Case Study / E. Schmidt, Z.Ruble, D. Akopian, D. J. Pack // IEEE Transactions on Instrumentation and Measurement. - 2018. - Vol. 68. - Is. 8. - Pp. 2768-2784. DOI: 10.1109/TIM.2018.2869261.

9. Lee J. Anti-Spoofing Technique Against GPS Time and Position Attacks Based on Sparse Signal Processing /j. Lee, E. Schmidt, N. Gatsis, D. Akopian // Proceedings of the 34th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+2021). - ION, 2021. - Pp. 3581-3590. DOI: 10.33012/2021.17988.

10. Huang G. A Low-Cost Approach of Magnetic Field-Based Location Validation for Global Navigation Satellite Systems / G. Huang, B. K. Taylor, D. Akopian // IEEE Transactions on Instrumentation and Measurement. - 2019. - Vol. 68. - Is. 12. - Pp. 4937-4944. DOI: 10.1109/TIM.2019.2901512.

11. DeGregoria A. J. Gravity Gradiometry and Map Matching: An Aid to Aircraft Inertial Navigation Systems: master’s thesis / A. J. DeGregoria. - Air Force Institute of Technology, 2010. - 130 p. DTIC: ADA517387.

12. Ююкин И. В. Сплайновое синтезирование картографированного эталона информативности поля в задаче корреляционно-экстремальной навигации / И. В. Ююкин // Вестник Государственного университета морского и речного флота имени адмирала С. О. Макарова. - 2022. - Т. 14. - № 1. - С. 25-39. DOI: 10.21821/2309-5180-2022-14-1-25-39.

13. Canciani A. J. Magnetic Navigation on an F-16 Aircraft Using Online Calibration / A. J. Canciani // IEEE Transactions on Aerospace and Electronic System. - 2022. - Vol. 58. - Is. 1. - Pp. 420-434. DOI: 10.1109/TAES.2021.3101567.

14. Canciani A. J. Absolute Positioning Using the Earth’s Magnetic Anomaly Field: doctoral dissertation / A. J. Canciani. - Ohio: Wright-Patterson Air Force Base, 2016. - 264 p. DTIC: AD1017870.

15. Karshakov E. V. Promising Map-Aided Aircraft Navigation Systems / E. V. Karshakov, B. V. Pavlov, M. Y. Tkhorenko, I. A. Papusha // Gyroscopy and Navigation. - 2021. - Vol. 12. - Is. 1. - Pp. 38-49. DOI: 10.1134/S2075108721010077.

16. Jimenez-Martinez M. J. An Approach to Improving GNSS Positioning Accuracy Using Several GNSS Devices / M. J. Jimenez-Martinez, M. Farjas-Abadia, N. Quesada-Olmo // Remote Sensing. - 2021. - Vol. 13. - Is. 6. - Pp. 1149. DOI: 10.3390/rs13061149.

17. Cui Z. Improving GNSS-R Sea Surface Altimetry Precision Based on the Novel Dual Circularly Polarized Phased Array Antenna Model / Z. Cui, W. Zheng, F. Wu, X. Li, C. Zhu, Z. Liu, X. Ma // Remote Sensing. - 2021. - Vol. 13. - Is. 15. - Pp. 2974. DOI: 10.3390/rs13152974.

18. Specht M. Consistency analysis of global positioning system position errors with typical statistical distributions / M. Specht // The Journal of Navigation. - 2021. - Vol. 74. - Is.6. - Pp. 1201-1218. DOI: 10.1017/S0373463321000485.

19. Krasuski K. Accuracy Assessment of Aircraft Positioning Using the Dual-Frequency GPS Code Observations in Aviation / K. Krasuski, S. Savchuk // Communications. - 2020. - Vol. 22. - Is. 2. - Pp. 23-30. DOI: 10.26552/com.C.2020.2.23-30.

20. Gnadt A. Machine Learning-Enhanced Magnetic Calibration for Airborne Anomaly Navigation / A. Gnadt // AIAA SCITECH 2022 Forum. - 2022. - Pp. 1760. DOI: 10.2514/6.2022-1760.

21. Getscher T. Magnetic Gradient Tensor Framework for Attitude-Free Position Estimation / T. Getscher, P. Florenta // Proceedings of the 2019 International Technical Meeting of The Institute of Navigation. - ION, 2019. - Pp. 495-507. DOI: 10.33012/2019.16706.

22. Yu P. An improved neural network method for aeromagnetic compensation / P. Yu, X. Zhao, J. Jia, S. Zhou // Measurement Science and Technology. - 2021. - Vol. 32. - Is. 4. - Pp. 045106. DOI: 10.1088/1361-6501/abd1b4.

23. Deryabin V. V. Neural Networks Based Prediction Model for Vessel Track Control / V. V. Deryabin // Automatic Control and Computer Sciences. - 2019. - Vol. 53. - Is. 6. - Pp. 502-510. DOI: 10.3103/S0146411619060038.

24. Kim S. Motion Planning by Reinforcement Learning for an Unmanned Aerial Vehicle in Virtual Open Space with Static Obstacles / S. Kim, J. Park, J. Yun, J. Seo // 2020 20th International Conference on Control, Automation and Systems (ICCAS). - IEEE, 2020. - Pp. 784-787. DOI: 10.23919/ICCAS5021.2020.9268253.

25. Sun M. Indoor Geomagnetic Positioning Using the Enhanced Genetic Algorithm Based Extreme Learning Machine / M. Sun, Y. Wang, S. Xu, H. Yang, K. Zhang // IEEE Transactions on Instrumentation and Measurement. - 2021. - Vol. 70. DOI: 10.1109/TIM.2021.3072699.

26. Sasaki A. Magnetic-Field-Based Position Sensing Using Machine Learning / A. Sasaki, E. Ohta // IEEE Sensors Journal. - 2020. - Vol. 20. - Is. 13. - Pp. 7292-7302. DOI: 10.1109/JSEN.2020.2979071.

27. Ouyang G. Analysis of Magnetic Field Measurements for Mobile Localisation / G. Ouyang, K. Abed-Meraim // 2021 International Conference on Indoor Positioning and Indoor Navigation (IPIN). - IEEE, 2021. - Pp. 1-8. DOI: 10.1109/IPIN51156.2021.9662551.

28. Ююкин И. В. Оптимизация моделирования навигационной изоповерхности методами базисных финитных сплайнов / И. В. Ююкин // Вестник Государственного университета морского и речного флота имени адмирала С. О. Макарова. - 2019. - Т. 11. - № 2. - С. 266-274. DOI: 10.21821/2309-5180-2019-11-2-266-274.

29. Ююкин И. В. Модификация метода наименьших квадратов для сплайн-аппроксимации навигационной изоповерхности / И. В. Ююкин // Вестник Государственного университета морского и речного флота имени адмирала С. О. Макарова. - 2019. - Т. 11. - № 4. - С. 631-639. DOI: 10.21821/2309-5180-2019-11-4-631-639.

30. Nam J. Magnetic Navigation System Utilizing a Closed Magnetic Circuit to Maximize Magnetic Field and a Mapping Method to Precisely Control Magnetic Field in Real Time /j. Nam, W. Lee, E. Jung, G. Jang // IEEE Transactions on Industrial Electronics. - 2018. - Vol. 65. - Is. 7. - Pp. 5673-5681. DOI: 10.1109/TIE.2017.2782220.

31. Ююкин И. В. Оптимальная сплайн-траектория информативного маршрута судна в корреляционно-экстремальной навигации / И. В. Ююкин // Вестник Государственного университета морского и речного флота имени адмирала С. О. Макарова. - 2022. - Т. 14. - № 2. - С. 230-247. DOI: 10.21821/2309-5180-2022-14-2-230-247.

32. Canciani A. J. An Analysis of the Benefits and Difficulties of Aerial Magnetic Vector Navigation / A. J. Canciani, C. J. Brennan // IEEE Transactions on Aerospace and Electronic System. - 2020. - Vol. 56. - Is. 6. - Pp. 4161-4176. DOI: 10.1109/TAES.2020.2987475.

33. Volkov Yu. S. Convergence of Quartic Interpolating Splines / Yu. S. Volkov // Proceedings of the Steklov Institute of Mathematics. - 2020. - Vol. 308. - Is. 1. - Pp. 196-202. DOI: 10.1134/S0081543820020169.

34. Ююкин И. В. Поиск ошибок в базе навигационных данных методом визуализации сплайновой изоповерхности / И. В. Ююкин // Вестник Государственного университета морского и речного флота имени адмирала С. О. Макарова. - 2020. - Т. 12. - № 3. - С. 481-491. DOI: 10.21821/2309-5180-2020-12-3-481-491.

35. Kvasov B. Weighted cubic and biharmonic splines / B. Kvasov, T. W. Kim // Computational Mathematics and Mathematical Physics. - 2017. - Vol. 57. - Is. 1. - Pp. 26-44. DOI: 10.1134/S0965542517010109.

36. Ююкин И. В. Синтез кубическими сплайнами искажённой изолинии в аспекте использования дифференциального режима спутниковой навигации / И. В. Ююкин // Вестник Государственного университета морского и речного флота имени адмирала С. О. Макарова. - 2021. - Т. 13. - № 3. - С. 341-358. DOI: 10.21821/2309-5180-2021-13-3-341-358.

37. Chaudhuri A. B-Splines / A. Chaudhuri // Encyclopedia of Computer Graphics and Games. - Springer, Cham, 2019. - Pp. 1-11. DOI: 10.1007/978-3-319-08234-9_359-1.

38. Ююкин И. В. Интерполяция навигационной функции сплайном лагранжева типа / И. В. Ююкин // Вестник Государственного университета морского и речного флота имени адмирала С. О. Макарова. - 2020. - Т. 12. - № 1. - С. 57-70. DOI: 10.21821/2309-5180-2020-12-1-57-70.

39. Ююкин И. В. Сплайн-интерполяция навигационных изолиний / И. В. Ююкин // Вестник Государственного университета морского и речного флота имени адмирала С. О. Макарова. - 2019. - Т. 11. - № 6. - С. 1026-1036. DOI: 10.21821/2309-5180-2019-11-6-1026-1036.

40. Penner A. ODF Using a 5-Point B-Spline / A. Penner // Fitting Splines to a Parametric Function. Springer Briefs in Computer Sciences. - Springer, Cham, 2019. - Pp. 37-42. DOI: 10.1007/978-3-030-12551-6_6.

41. Ююкин И. В. Корреляционно-экстремальная навигация по геофизическим полям на основе использования сплайновой технологии / И. В. Ююкин // Вестник Государственного университета морского и речного флота имени адмирала С. О. Макарова. - 2021. - Т. 13. - № 4. - С. 505-517. DOI: 10.21821/2309-5180-2021-13-4-505-517.

42. Volkov Yu. S. On Error Estimates of Local Approximation by Splines / Yu. S. Volkov, V. V. Bogdanov // Siberian Mathematical Journal. - 2020. - Vol. 61. - Is. 5. - Pp. 795-802. DOI: 10.1134/S0037446620050031.

43. Chaudhuri A. Shape Deformation Models / A. Chaudhuri // Encyclopedia of Computer Graphics and Games. - Springer, Cham, 2019. - Pp. 1-10. DOI: 10.1007/978-3-319-08234-9_358-1.

44. Evstifeev M. I. Dynamics of Onboard Gravity Gradiometers / M. I. Evstifeev // Gyroscopy and Navigation. - 2020. - Vol. 11. - Is. 1. - Pp. 13-24. DOI: 10.1134/S207510872001006X.

45. Karshakov E. V. Aeromagnetic Gradiometry and Its Application to Navigation / E. V. Karshakov, M. Y. Tkhorenko, B. V. Pavlov // Automation and Remote Control. - 2018. - Vol. 79. - Is. 5. - Pp. 897-910. DOI: 10.1134/S0005117918050107.

46. Gao D. An Aided Navigation Method Based on Strapdown Gravity Gradiometer / D. Goa, B. Hu, L. Chang, F. Qin, X. Lyu // Sensors. - 2021. - Vol. 21. - Is. 3. - Pp. 829. DOI: 10.3390/s21030829.

47. Dai T. A robust underwater navigation method fusing data of gravity anomaly and magnetic anomaly / T. Dai, L. Miao, H. Shao // International Journal of Systems Science. - 2019. - Vol. 50. - Is. 4. - Pp. 679-693. DOI: 10.1080/00207721.2019.1567866.

48. Yuyukin I. V. Configuring the fan of spline gradients when approximating the navigational isoline with a linear piecewise functional / I. V. Yuyukin // Journal of Physics: Conference Series. - IOP Publishing, 2021. - Vol. 2032. - № 1. - Pp. 012054. DOI: 10.1088/1742-6596/2032/1/012054.


Review

For citations:


Yuyukin I.V. PERSPECTIVE MAGNETIC NAVIGATION WITH USING THE SPLINE FUNCTIONS METHOD FOR OPTIMAL FORMATION OF THE MAP-AIDED STANDARD. Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova. 2022;14(4):519-534. (In Russ.) https://doi.org/10.21821/2309-5180-2022-14-4-519-534

Views: 290


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2309-5180 (Print)
ISSN 2500-0551 (Online)