Preview

Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova

Advanced search

MODELING OF THE WELD PRIMARY MACROSTRUCTURE FORMATION AT LASER WELDING

https://doi.org/10.21821/2309-5180-2022-14-2-281-295

Abstract

In modern shipbuilding, those enterprises and shipyards that introduce innovative and highly efficient technologies gain an advantage in the competitive struggle. The experience of the largest European shipyards, such as Meyer Werft and Blohm und Voss in Germany, Kvaerner Massa Yard in Finland, Fincantieri in Italy, shows the great potential of laser equipment in creating breakthrough technologies in shipbuilding. The leading role among the developed technologies is played by the technologies of laser and laser-arc welding. Compared to arc welding, laser and laser-arc welding increase the welding speed by 2-3 times, and a decrease in butt gaps leads to a decrease in the need for welding consumables. The approaches to creating a model for predicting the metal structure and mechanical properties of a welded joint in laser welding are discussed in the paper. This will make it possible to establish welding modes at the preproduction stage and obtain the properties of welded joints specified by the designer. This model is based on mathematical calculations of the thermal regime of welding and the process of crystallization of welds. A mathematical model of laser welding is used, taking into account the presence of a vapor-gas channel, which allows laser radiation to penetrate the entire thickness of the weld, which ensures the formation of a deep, narrow weld. The results of the calculation make it possible to determine the shape of the penetration pool and the position of the main temperature lines in the heat-affected zone. For beam welding methods, it is proposed to approximate the surface of the melt pool (crystallization front) by a cubic spline. Its main advantage is that the entire shape of the surface is modeled most accurately and completely, which allows you to build the surfaces of all areas of the bath without excluding any parts. On the basis of such a spline, the predominant direction of crystallite growth, their growth rate in the direction of welding are determined, and the integral characteristics of the emerging primary macrostructure of the weld metal are found. Based on the criteria characterizing the process of crystallization, a prediction of the macrostructure of the weld metal is given.

About the Authors

N. V. Makarchuk
Admiral Makarov State University of Maritime and Inland Shipping
Russian Federation


A. V. Makarchuk
Admiral Makarov State University of Maritime and Inland Shipping
Russian Federation


V. N. Startsev
NRC “Kurchatov Institute” - CRISM “Prometey”
Russian Federation


References

1. Jasnu U. High-power fibre laser in shipbuilding. New aplication are established in Europe shipyards / U. Jasnu, R. Gaede // Laser Technic Journal. - 2008. - Vol. 3.

2. Salminen A. The effect of welding parameters on keyhole and melt pool behavior during laser welding with high power fiber laser / A. Salminen, J. Lehtinen, P. Harrko // International Congress on Applications of Lasers & Electro-Optics. - Laser Institute of America, 2008 - Is. 1. - Pp. 703. DOI: 10.2351/1.5061333.

3. Kaplan A. A Model of deep penetration laser welding based on calculation of the keyhole profile / A. Kaplan // Journal of physics D: Applied Physics. - 1994. - Vol. 27. - Is. 9. - Pp. 1805-1814.

4. Dowden J. A mathematical investigation of the penetration depth in keyhole welding with continuens CO2 lasers /j. Dowden, P. Kapadia // Journal of physics D: Applied Physics. - 1995. - Vol. 28. - Is. 11. - Pp. 2252-2261.

5. Прохоров Н. Н. Технологическая прочность сварных швов в процессе кристаллизации / Н. Н. Прохоров. - М.: Металлургия, 1979. - 248 с.

6. Wolf M. Influence of the weld pool geometry on solidification crack formation / M. Wolf, H. Schobbert, Th. Böllinghaus // Hot Cracking Phenomena in Welds. - Springer, Berlin, Heidelberg, 2005. - Pp. 245-268. DOI: 10.1007/3-540-27460-X_13.

7. Труханов К. Ю. Исследование влияния формы сварочной ванны на опасность возникновения горячих трещин / К. Ю. Труханов, А. В. Царьков // Сварка и диагностика. - 2014. - № 1. - С. 27-31.

8. Ситников Б. В. Формирование стойкости сварных швов против образования горячих трещин при сварке с повышенной скоростью / Б. В. Ситников, В. П. Маршуба // Сварочное производство. - 2021. - № 2. - С. 11-18.

9. Farrar J. C. M. Hot cracking tests - The route to International Standardization // Hot cracking phenomena in welds. - Springer, Berlin, Heidelberg, 2005. - Pp. 291-304.

10. Hu L. H. Effects of preheating temperature on cold cracks, microstructures and properties of high power laser hybrid welded 10Ni3CrMoV steel / L. H. Hu [et al.] // Materials & Design. - 2011. - Vol. 32. - Is. 4. - Pp. 1931-1939. DOI: 10.1016/j.matdes.2010.12.007.

11. Башенко В. В. Метод решения трехмерных задач по формированию первичной кристаллической макроструктуры сварных швов / В. В. Башенко, В. В. Плошихин // Физика и химия обработки материалов. - 1996. - № 5. - С. 18-22.

12. Язовских В. М. Моделирование макроструктуры и особенности кристаллизации металла при электронно-лучевой сварке с глубоким проплавлением / В. М. Язовских, Т. В. Ольшанская // Вестник ПГТУ. Сварка. - 2002. - С. 164-184.

13. Кархин В. А. Тепловые процессы при сварке. - СПб.: Изд-во Политехн. ун-та, 2013. - 646 с.

14. Язовских В. М. Особенности кристаллизации металла при электронно-лучевой сварке с глубоким проплавлением / В. М. Язовских [и др.] // Сварочное производство. - 1999. - № 1. - С. 3-7.

15. Osio A. S. The effect of solidification on the formation and growth of inclusions in low carbon steel welds / A. S. Osio, S. Liu, D. L. Olson // Materials Science and Engineering: A. - 1996. - Vol. 221. - Is. 1-2. - Pp. 122-133. DOI: 10.1016/S0921-5093(96)10466-4.

16. DebRoy T. Physical processes in fusion welding / T. DebRoy, S. A. David // Reviews of modern physics. - 1995. - Vol. 67. - Is 1. - Pp. 85-103. DOI: 10.1103/RevModPhys.67.85.


Review

For citations:


Makarchuk N.V., Makarchuk A.V., Startsev V.N. MODELING OF THE WELD PRIMARY MACROSTRUCTURE FORMATION AT LASER WELDING. Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova. 2022;14(2):281-295. (In Russ.) https://doi.org/10.21821/2309-5180-2022-14-2-281-295

Views: 248


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2309-5180 (Print)
ISSN 2500-0551 (Online)