Preview

Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova

Advanced search

PERSPECTIVES OF USING THE STATIC ELECTRIC POWER SOURCES ON SHIPS WITH ELECTRIC PROPULSION PLANTS

https://doi.org/10.21821/2309-5180-2020-12-1-202-213

Abstract

It is noted that to date the electric power sources based on heat engines and rotating electrical machines, first of all diesel-generators, have received the most wide spread in the marine fleet. Tightening the environmental requirements and increasing the fuel prices in the recent years condition the necessity and expediency of searching for alternative kinds of electric power sources that can be used as the main ones including on ships with electric propulsion plants. The feasibility of using the static electric power sources for above mentioned purpose is researched in the paper. The types are considered, the principle of operation is described, the advantages, disadvantages and scope are listed for the following types of static electric power sources: accumulator batteries based on a new element base, supercapacitors, solar batteries, fuel cells, direct heat conversion generators. The choice of a source type is determined by the operation modes for which it is intended, and by the power of the supplied electrical consumers. Electric power sources of new generation can be used in buffer mode or in autonomous mode as the main electric power source. The use of static electric power sources in the buffer operation mode can significantly reduce the fuel consumption of electric propulsion plants in the dynamic modes, including on icebreakers and ice-going vessels during moving in ice or on waving. In this case saving is achieved by absorbing the excess energy during braking of an electric propulsion motor and its subsequent release during acceleration. Application in the second operation mode is especially relevant in connection with the tightening the environmental requirements for marine vessels. Switching the main generators off and transition to supplying from static electric power sources can reduce harmful emissions to the atmosphere and the overall level of underwater noise emitted by the vessel, which is important in biological and geophysical researches. The composition and structure of a typical circuit design solution for a ship electric power system built using the static electric power sources of new generation are given in the paper. It is concluded that the introduction of static electric power sources of new generation lets to optimize operating modes and increase the structural flexibility of the electric power installation, reduce the consumption of fuels and lubricants, increase the reliability and service life of drive engines of generating sets, reduce harmful emissions into the atmosphere, and also increase propulsive power in full speed modes.

About the Authors

A. V. Grigoryev
Admiral Makarov State University of Maritime and Inland Shipping; Saint Petersburg Electrotechnical University
Russian Federation


R. R. Zaynullin
JSC “RPC “Ship electric propulsion”
Russian Federation


S. M. Malyshev
Saint Petersburg Electrotechnical University; JSC “RPC “Ship electric propulsion”
Russian Federation


References

1. Григорьев А. В. Электроэнергетические установки танкеров-газовозов / А. В. Григорьев, Р. Р. Зайнуллин // Судостроение. - 2010. - № 3 (790). - С. 39-42.

2. Кудинович И.В. Ядерные энергетические установки перспективных объектов морской техники гражданского назначения / И. В. Кудинович, А. Ж. Сутеева, В. Г. Хорошев // Труды Крыловского государственного научного центра. - 2018. - № 4 (386). - С. 95-106. DOI: 10.24937/2542-2324-2018-4-386-95-106.

3. Романовский В. В. Перспективы развития систем электродвижения / В. В. Романовский, Б. В. Никифоров, А. М. Макаров // Вестник Государственного университета морского и речного флота имени адмирала С. О. Макарова. - 2018. - Т. 10 - № 3. - С. 586-596. DOI: 10.21821/2309-5180-2018-10-3-586-596.

4. Хватов О. С. Судовая пропульсивная гибридная установка / О. С. Хватов, И. А. Тарпанов // Вестник Волжской государственной академии водного транспорта. - 2013. - № 35. - С. 337-340.

5. Capasso C. Design of a Hybrid Propulsion Architecture for Midsize Boats / C. Capasso, E. Notti, O. Veneri // Energy Procedia. - 2019. - Vol. 158. - Pp. 2954-2959. DOI: 10.1016/j.egypro.2019.01.958.

6. Geertsma R. D. Design and control of hybrid power and propulsion systems for smart ships: A review of developments / R. D. Geertsma [и др.] // Applied Energy. - 2017. - Vol. 194. - Pp. 30-54. DOI: 10.1016/j.apenergy.2017.02.060.

7. Груздев А. И. Опыт создания батарей на базе литий-ионных аккумуляторов большой ёмкости // Электрохимическая энергетика. - 2011. - Т. 11. -№ 3. - С. 128-135.

8. Силютин Д. Е. Варианты конструктивных исполнений суперконденсаторов / Д. Е. Силютин, [и др.] // Вестник Воронежского государственного технического университета. - 2012. - Т. 8. - № 7-2. - С. 96-100.

9. Кононенко С. В. Применение солнечных батарей на объектах морской инфраструктуры / С. В. Кононенко [и др.] // Вестник Астраханского государственного технического университета. Серия: Морская техника и технология. - 2018. - № 3. - С. 101-106. DOI: 10.24143/2073-1574-2018-3-101-106.

10. Беляев П. В. Исследования характеристик топливного элемента с протонообменной мембраной при изменении концентрации водорода / П. В. Беляев, Д. А. Подберезкин, Р. А. Эм // Омский научный вестник. - 2017. - № 6 (156). - С. 58-61.

11. Баранов А. П. Судовые системы электродвижения с генераторами прямого преобразования теплоты (режимы работы и их моделирование) / А. П. Баранов. - Л.: Судостроение, 1991. - 232 с.

12. Кузнецов С. Е. Основы технической эксплуатации судового электрооборудования и средств автоматизации. - СПб.: ГУМРФ имени адмирала С. О. Макарова, 2015. - 584 с.


Review

For citations:


Grigoryev A.V., Zaynullin R.R., Malyshev S.M. PERSPECTIVES OF USING THE STATIC ELECTRIC POWER SOURCES ON SHIPS WITH ELECTRIC PROPULSION PLANTS. Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova. 2020;12(1):202-213. (In Russ.) https://doi.org/10.21821/2309-5180-2020-12-1-202-213

Views: 276


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2309-5180 (Print)
ISSN 2500-0551 (Online)