Preview

Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova

Advanced search

STOCHASTIC MODEL FOR FORECASTING OF CRUISE OR FERRY SHIP ARRIVAL AT SEAPORT FOR INFRASTRUCTURE ASSESSMENT

https://doi.org/10.21821/2309-5180-2022-14-2-169-180

Abstract

The topic of the research is the development of new models and methods to assess the efficiency of port operations of sea passenger ports and terminals in order to effectively plan the work and accurate forecasting of infrastructure development. It is noted that changes in cruise and ferry route networks, especially relevant in the conditions of passenger traffic recovery after the gradual lifting of restrictions due to Covid-19, will directly affect port congestion. It is proposed to include into the sphere of decision-making on management of the sea passenger port the models based on consideration of probabilistic processes of cruise or ferry vessels calls. The Baltic Sea region is chosen as an object of research. The main modern directions in the sphere of sea passenger transportations confirming the gradual recovery of the route networks operation are presented. The flow of cruise and ferry vessels of the sea passenger port “Passenger port St. Petersburg “Marine Facade” is chosen as an object of research. The analysis of loading of berths, the analysis of the size of cruise and ferry ships, the route networks of ferry and cruise lines are carried out. As a result of the research a new stochastic model is presented and comparison with known distribution laws is carried out. Based on the data obtained, a confidence zone for making decisions on port congestion is determined. This area is formed on the basis of an assessment of the study of the dynamics of ship traffic nonstationary intensity, followed by the application of correlation-regression analysis and the characteristics of the random function describing the intervals between individual arrivals of cruise and ferry ships. The proposed model includes the ability to consider different priorities, primarily in terms of vessel length. Digital transport model is built in AnyLogic environment for port congestion study. The received data are used for optimization experiments in AnyLogic software environment with the purpose of complex estimation of the seaport operation for a year. Based on the optimization experiment and simulation, data are generated considering different distribution laws and used for decision making in case of uncertainty for infrastructure modernization. The presented model can be used for substantiation of management decisions both on strategic and tactical levels for assessing the efficiency of investment projects on development of sea passenger ports and terminals.

About the Authors

N. N. Maiorov
Saint-Petersburg State University of Aerospace Instrumentation
Russian Federation


V. A. Fetisov
Saint-Petersburg State University of Aerospace Instrumentation
Russian Federation


A. A. Dobrovolskaia
Saint-Petersburg State University of Aerospace Instrumentation
Russian Federation


References

1. Cruise Market Watch. Growth of the Ocean Cruise Line Industry [Электронный ресурс]. - Режим доступа: https://cruisemarketwatch.com/growth/ (дата обращения: 01.02.2022).

2. Ćorluka G. Cruise port passenger flow analysis: A cruise port governance perspective / G. Ćorluka, I. Peronja, D. Tubić // NAŠE MORE: znanstveni časopis za more i pomorstvo. - 2020. - Vol. 67. - Is. 3. - Pp. 181-191. DOI: 10.17818/NM/2020/3.1.

3. Krile S. Work analysis of maritime passenger terminals for particular region based on circos plot / S. Krile, N. N. Maiorov // NAŠE MORE: znanstveni časopis za more i pomorstvo. - 2019. - Vol. 66. - Is. 2. - Pp. 57-61. DOI: 10.17818/NM/2019/2.2.

4. Пассажирский порт Санкт-Петербург «Морской фасад» [Электронный ресурс]. - Режим доступа: https://www.portspb.ru/O_porte/about (дата обращения 20.01.2022).

5. Maiorov N. Simulation of the route network and ferry traffic intensity based on the process of discretization and circos plot intensity diagram / N. Maiorov, V. Fetisov, S. Krile, D. Miskovic // Transport Problems. - 2019. - Vol. 14. - Is. 4. - Pp. 21-30. DOI: 10.20858/tp.2019.14.4.2.

6. Krile S. Modernization of the Infrastructure of Marine Passenger Port Based on Synthesis of the Structure and Forecasting Development / S. Krile, N. Maiorov, V. Fetisov // Sustainability. - 2021. - Vol. 13. - Is. 7. - Pp. 3869. DOI: 10.3390/su13073869.

7. AnyLogic [Электронный ресурс]. - Режим доступа: https://www.anylogic.com (дата обращения: 20.01.2022).

8. Язвенко М. Р. Моделирование морского грузового порта как системы массового обслуживания в среде AnyLogic / М. Р. Язвенко, А. Г. Морозков // Системный анализ и логистика. - 2020. - № 4 (26). - C. 59-66. DOI: 10.31799/2007-5687-2020-4-59-66.

9. Yan S. Optimal scheduling models for ferry companies under alliances / S. Yan, C. H. Chen, H. Y. Chen, T. C. Lou // Journal of Marine Science and Technology. - 2007. - Vol. 15. - Is. 1. - Pp. 8. DOI: 10.51400/2709-6998.2033.

10. Chen M. J. Itinerary planning: Modeling cruise lines’ length of stay in ports / M. J. Chen, P. Nijkamp // International Journal of Hospitality Management. - 2018. - Vol. 73. - Pp. 55-63. DOI: 10.1016/j.ijhm.2018.02.005.

11. Воевудский Е. Н. Стохастические модели в проектировании и управлении деятельностью портов / Е. Н. Воевудский, М. Я. Постан. - М.: Транспорт, 1987. - 318 с.

12. Dragovic B. Simulation Modelling of Ship-Berth Link with Priority Service / B. Dragovic, N. K. Park, Z. Radmilović, V. Maraš // Maritime Economics & Logistics. - 2005. - Vol. 7. - Is. 4. - Pp. 316-335. DOI: 10.1057/palgrave.mel.9100141.

13. Бродецкий Г. Л. Системный анализ в логистике. Выбор в условиях неопределенности /Г. Л. Бродецкий. - М.: Academia, 2010. - 336 с.


Review

For citations:


Maiorov N.N., Fetisov V.A., Dobrovolskaia A.A. STOCHASTIC MODEL FOR FORECASTING OF CRUISE OR FERRY SHIP ARRIVAL AT SEAPORT FOR INFRASTRUCTURE ASSESSMENT. Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova. 2022;14(2):169-180. (In Russ.) https://doi.org/10.21821/2309-5180-2022-14-2-169-180

Views: 495


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2309-5180 (Print)
ISSN 2500-0551 (Online)