Preview

Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova

Advanced search

A MODEL OF VESSEL MOTION FOR DEAD RECKONING

https://doi.org/10.21821/2309-5180-2022-14-1-17-24

Abstract

A 4-DOF vessel motion model for dead reckoning purposes is developed. The model is based on a system of nonlinear equations of vessel motion in calm water derived for the S175 container ship. The model additionally contains wind and wave influences. Wind is assumed to be constant for the velocity and direction. Waves are modelled as wind waves and irregular and assumed to be long-crested. Their direction equals wind direction. Only second-order wave disturbances (wave drift) are taken into account. They are determined on the basis of coefficients calculated by means of hydrodynamic software for ideal fluid. The model is programmed in the Scilab. Parameters of turning ability are determined and compared then with normative values governed by the IMO. A symmetric property test is proposed to validate the adequacy of the model. This algorithm supposes that sequences of rudder deflection, initial heading and true wind direction values are initially formed. The true wind direction and initial heading values may be of the same or reciprocal direction, or create an angle of 90 degrees. Inserted cycles for the elements of the above sequences are carried out, and matrices of end-of-time coordinates for each maneuver are calculated. Some of the matrices are transformed, and symmetric property conditions are formulated in a matrix form. The influence of time step value on a model output is studied. The maximum value of the distance between appropriate points of the trajectories during a maneuver is a criterion of their difference.

Keywords


About the Author

V. V. Deryabin
Admiral Makarov State University of Maritime and Inland Shipping
Russian Federation


References

1. Дерябин В. В. Обобщенная нейросетевая модель счисления пути судна / В. В. Дерябин // Вестник Государственного университета морского и речного флота имени адмирала С. О. Макарова. - 2020. - Т. 12. - № 3. - С. 423-435. DOI: 10.21821/2309-5180-2020-12-3-423-435.

2. Deryabin V. V. Neural Networks Based Prediction Model for Vessel Track Control / V. V. Deryabin // Automatic Control and Computer Sciences. - 2019. - Vol. 53. - Is. 6. - Pp. 502-510. DOI: 10.3103/S0146411619060038.

3. Skulstad R. Dead Reckoning of Dynamically Positioned Ships: Using an Efficient Recurrent Neural Network / R. Skulstad, G. Li, T. I. Fossen, B. Vik, H. Zhang // IEEE Robotics & Automation Magazine. - 2019. - Vol. 26. - Is. 3. - Pp. 39-51. DOI: 10.1109/MRA.2019.2918125.

4. Bielicki S. Prediction of ship motions in irregular waves based on response amplitude operators evaluated experimentally in noise waves / S. Bielicki // Polish Maritime Research. - 2021. - Vol. 28. - Is. 1. - Pp. 16-27. DOI: 10.2478/pomr-2021-0002.

5. Fossen T. I. Handbook of Marine Craft Hydrodynamics and Motion Control / T. I. Fossen. - 2nd edition. - Hoboken, NJ: Wiley, 2021. - 736 p.

6. Skandali D. Calibration of response amplitude operators based on measurements of vessel motions and directional wave spectra / D. Skandali, E. Lourens, R. H. M. Ogink // Marine Structures. - 2020. - Vol. 72. - Pp. 102774. DOI: 10.1016/j.marstruc.2020.102774.

7. Таранов А. Е. Численное моделирование динамики судна в задачах управляемости и качки / А. Е. Таранов, А. Э. Блищик // Труды Крыловского государственного научного центра. - 2018. - № 2 (384). - С. 29-38. DOI: 10.24937/2542-2324-2018-2-384-29-38.

8. Ваганов А. Б. Динамика маневрирующего судна в условиях волнения моря / А. Б. Ваганов, И. Д. Краснокутский // Транспортные системы. - 2018. - № 1 (7). - С. 25-38. DOI: 10.46960/62045_2018_1_25.

9. Son K. On the coupled motion of steering and rolling of a high speed container ship / K. Son, K. Nomoto // Journal of the Society of Naval Architects of Japan. - 1981. - Vol. 1981. - Is. 150. - Pp. 232-244. DOI: 10.2534/jjasnaoe1968.1981.150_232.

10. Ююкин И. В. Аппроксимация геоида методами сплайн-функций / И. В. Ююкин // Вестник Государственного университета морского и речного флота имени адмирала С. О. Макарова. - 2020. - Т. 12. - № 2. - С. 262-271. DOI: 10.21821/2309-5180-2020-12-2-262-271.

11. Blendermann W. Parameter identification of wind loads on ships / W. Blendermann // Journal of Wind Engineering and Industrial Aerodynamics. - 1994. - Vol. 51. - Is. 3. - Pp. 339-351.


Review

For citations:


Deryabin V.V. A MODEL OF VESSEL MOTION FOR DEAD RECKONING. Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova. 2022;14(1):17-24. (In Russ.) https://doi.org/10.21821/2309-5180-2022-14-1-17-24

Views: 333


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2309-5180 (Print)
ISSN 2500-0551 (Online)