Preview

Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova

Advanced search

COMPARATIVE ANALYSIS OF INDUSTRIAL UNDERWATER ACOUSTIC MODEMS

https://doi.org/10.21821/2309-5180-2021-13-6-832-841

Abstract

The results of the current level of development of data transmission technology using underwater acoustic modems are presented in the paper. Underwater acoustic modems are widely used in the communication networks of underwater robotic vehicles. Such systems are designed to solve various problems in the study and monitoring of sea areas. The specificity of data transmission in an underwater acoustic channel is considered. The effects arising from the low speed of sound propagation in the underwater environment are described. Possibility of distortion due to multipath propagation and the Doppler Effect is indicated. An overview of existing underwater acoustic modems is presented. The main characteristics of underwater acoustic modems, such as bandwidth, range, data rate, modulation type, etc., are highlighted. The most important parameters that determine the tactical and technical characteristics of the modems are range and data rate. The empirical dependence of the data rate on the distance is revealed. The current maximum data rate in the underwater acoustic channel is given. The data given by the modem manufacturers correspond to the case of an ideal channel. The best manufacturers of the underwater acoustic modems are indicated. The features of the most common types of modulation are considered. Modulation using Sweep Spread Carrier technology is described in detail. This modulation allows you to compensate for the effect of multipath propagation and take into account the Doppler shift due to the motion subscribers of the underwater acoustic network. Spectrum spreading technology is considered. The applying of modulation using spread-spectrum technology improves the noise immunity of underwater acoustic modems. The need to formalize the calculation of the signal-to-noise ratio for the hydro acoustic data transmission channel is emphasized. The prospects for the development of data transmission technology using underwater acoustic modems are determined.

About the Author

T. K. Sharafutdinova
Kuznetsov Naval Academy
Russian Federation


References

1. Зубченко Э. С. Перспективы использования автономных подводных необитаемых аппаратов для обеспечения ВМФ гидрографической и океанологической информацией / Э. С. Зубченко, А. М. Шарков // Навигация и гидрография. - 2014. - № 37. - С. 59-65.

2. Инзарцев А. В. Применение автономного необитаемого подводного аппарата для научных исследований в Арктике / А. В. Инзарцев [и др.] // Подводные исследования и робототехника. - 2007. - № 2(4). - С. 5-14.

3. Быкова В. С. Стенд для отработки системы управления автономного необитаемого подводного аппарата / В. С. Быкова [и др.] // Материалы конференции «Управление в морских системах» (УМС-2020). 13-я мультиконференция по проблемам управления. - СПб.: ОАО «Концерн «ЦНИИ «Электроприбор», 2020. - С. 42-44.

4. Кебкал К. Г. Пути решения проблем создания сетевой подводной связи и позиционирования / К. Г. Кебкал, А. И. Машонин, Н. В. Мороз // Гироскопия и навигация. - 2019. - Т. 27. - № 2 (105). - С. 106-135. DOI 10.17285/0869-7035.2018.27.2.106-135.

5. Пат. 2655702 Российская Федерация, МПК H04R 1/44. Гидроакустическое устройство / А. В. Дикарев, С. М. Дмитриев; заяв. и патентообл. ООО «Лаборатория подводной связи и навигации». - № 2017110037; заявл. 27.03.2017; опубл. 29.05.2018. Бюл. № 16. - 10 с.

6. Annalakshmi G. Underwater Acoustic Modem - Challenges, Technology and Applications - A Review Survey / G. Annalakshmi, M. Sakthivel Murugan // Oceanography & Fisheries Open Access Journal. - 2017. - Vol. 2. - Is. 4. - Pp. 60-69. DOI: 10.19080/OFOAJ.2017.02.555592.

7. Benson B. Design of a low-cost underwater acoustic modem / B. Benson, Y. Li, B. Faunce, K. Domond, Kimball, C. Schurgers, R. Kastner // IEEE Embedded Systems Letters. - 2010. - Vol. 2. - Is. 3. - Pp. 58-61. DOI: 10.1109/LES.2010.2050191.

8. Sendra S. Underwater wireless communications in freshwater at 2.4 GHz / S. Sendra, J. Lloret, J. J. Rodrigues, J. M. Aguiar // IEEE Communications Letters. - 2013. - Vol. 17. - Is. 9. - Pp. 1794-1797. DOI: 10.1109/LCOMM.2013.072313.131214.

9. Вершинин А. С. Сравнительный анализ гидроакустических модемов / А. С. Вершинин // Молодой ученый. - 2015. - № 12 (92). - C. 156-161.

10. Demirors E. A high-rate software-defined underwater acoustic modem with real-time adaptation capabilities / Е. Demirors, G. Sklivantis, G. E. Santagati, T. Melodia, S. N. Batalama // IEEE Access. - 2018. - Vol. 6. - Pp. 18602-18615. DOI: 10.1109/ACCESS.2018.2815026.

11. Агафонов А. В. Свисты и импульсно-тональные сигналы: две системы акустической коммуникации афалин: дис. … канд. биол. наук: 03.02.10: защищена 15.02.2018: утв. 10.01.2018 / Александр Владиславович Агафонов. - М.: ФГБУ Институт океанологии им. П. П. Ширшова РАН, 2017. - 178 с.

12. Pat. 6985749 B2 United States, H04B1/707, H04B14/026, H04L1/04, H04L25/4902, H04L27/10, H04L27/32, H04L5/02, H04B2001/6912. Method and devices for transmitting and receiving information / R. Bannash, K. Kebkal. - US20030022651A1; Declared 30.01.2003; publ. 10 Jan. 2006.

13. Kebkal K. G. Sweep-spread carrier for underwater communication over acoustic channels with strong multipath propagation / K. G. Kebkal, R. Bannasch // The Journal of the Acoustical Society of America. - 2002. - Vol. 112. - Is. 5. - Pp. 2043-2052. DOI: 10.1121/1.1504855.

14. Сергиенко А. Б. Цифровая связь / А. Б. Сергиенко. - СПб.: СПбГЭТУ «ЛЭТИ», 2012. - 165 с.

15. Yu X. Wireline Quality Underwater Wireless Communication Using High Speed Acoustic Modems / X. Yu // OCEANS 2000 MTS/IEEE Conference and Exhibition. Conference Proceedings (Cat. No. 00CH37158). - IEEE, 2000. - Vol. 1. - Pp. 417-422. DOI: 10.1109/OCEANS.2000.881294.


Review

For citations:


Sharafutdinova T.K. COMPARATIVE ANALYSIS OF INDUSTRIAL UNDERWATER ACOUSTIC MODEMS. Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova. 2021;13(6):832-841. (In Russ.) https://doi.org/10.21821/2309-5180-2021-13-6-832-841

Views: 353


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2309-5180 (Print)
ISSN 2500-0551 (Online)