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The study aims to increase the efficiency and accuracy of solving optimal control problems for ship dynamic 
systems and technological processes in water transport under conditions of digital transformation using symbolic 
computing tools. The paper addresses the problem of optimal control of a nonlinear dynamic object by representing 
the system in symbolic mathematical form. The proposed computational algorithm provides an analytical solution 
of differential equations through linearization and integration in a standard matrix representation. Using 
the Hamiltonian approach, which ensures the transition from functional minimization to static optimization, 
a control vector is derived and the system of equations is transformed into symbolic form. Taking into account 
the syntax of symbolic functions, an analytical block describing system dynamics is identified, and a solver 
is constructed that includes the system dynamics and boundary conditions for state variables at the initial and final 
moments of the solution interval. As a result, equations for state and control variables are obtained, which can 
subsequently be converted into numerical form for quantitative evaluation and graphical interpretation. Using 
MATLAB programs, estimates of four boundary conditions are obtained and presented graphically. The proposed 
algorithmic solution of the boundary value problem differs from existing approaches by employing an analytical 
model expressed in symbolic terms. A discrete analogue of the model is obtained on the basis of the A. N. Krylov 
matrix with norm estimation and control representation in CVX format. The results confirm the correctness 
of the developed algorithms and software and demonstrate the expediency of combining analytical and numerical 
methods for modeling and optimization of dynamic systems.
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С ПРИМЕНЕНИЕМ СИМВОЛЬНЫХ ВЫЧИСЛЕНИЙ В СРЕДЕ MATLAB
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Темой исследования является повышение эффективности и точности решения задач оптимально-
го управления технологическими процессами и производствами на водном транспорте в условиях цифровой 
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трансформации с применением инструментов символьной математики. В работе решена задача оптималь-
ного управления нелинейным динамическим объектом средствами цифровизации в кодах символьной мате-
матики. Предложенный вычислительный алгоритм предусматривает аналитическое решение дифференци-
альных уравнений путем линеаризации и интегрирования их в стандартном матричном формате. Согласно 
гамильтониану, обеспечивающему переход от функциональной минимизации к статической оптимизации, 
получен вектор управления, а также обеспечен перевод системы уравнений в символьный формат.  С учетом 
синтаксиса функций выделен блок динамики системы в аналитическом виде, а также образован решатель, 
состоящий из блока динамики и граничных условий на переменные состояния в начале и по окончании времени 
решения. В результате составлены уравнения для переменных состояния и управления, которые для коли-
чественных оценок и графической интерпретации свободно переводятся в числовой формат. С помощью 
программ в кодах MATLAB выполнены оценки четырех краевых условий, приведенных на графиках. Отличие 
предложенного алгоритмического решения краевой задачи от существующих решений состоит в приме-
нении аналитической модели в символьных терминах. Дискретный аналог модели получен на базе матри-
цы А. Н. Крылова с оценкой нормы и управления в формате CVX. Приведенные решения позволяют сделать 
вывод о корректности представленных алгоритмов и программ, а также о целесообразности применения 
для моделирования систем аналитических методов в сочетании с численными. 

Ключевые слова: оптимизация, алгоритм, гамильтониан, краевые условия, символьный формат вы-
числений, аналитическое решение, матрица А. Н. Крылова, моделирование.
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 (Introduction)
Many practical optimization problems arising in the modeling of dynamic control processes of 

shipboard objects and production systems in water transport require adaptation to specific models using 
basic computational systems [1]. As computational tools are regularly updated, new algorithms and 
software have emerged whose computational properties have significantly improved in terms of solution 
speed and reliability for applied problems, which has created a need to interpret these new solutions and 
to develop methods for their effective application [2]. In this context, special attention should be given 
to the MATLAB computational environment, which is one of the most powerful universal integrated 
systems of computer mathematics [3]. Its toolboxes, in addition to existing computational tools, have 
been supplemented with solvers in CVX format capable of working with models containing linear matrix 
inequalities, which has not only expanded the class of solvable mathematical programming problems 
but has also led to new approaches to the synthesis of closed-loop systems possessing asymptotic 
stability [2]. Particular attention should be paid to the potential capabilities of the symbolic computing 
package (Symbolic Math Toolbox), on the basis of which a computational algorithm for the synthesis of 
an optimal dynamic system has been developed.

Symbolic computations are referred to as analytical, since the initial data for computations are 
specified in the form of analytical functional relationships, and the computation results are presented in 
symbolic (analytical) form [4]. When boundary conditions and numerical values of parameters of the 
systems under study are specified, the obtained solutions correspond to particular cases of the results 
of symbolic computations. The file system of the Symbolic Math Toolbox imparts qualitatively new 
properties to the process of automating complex analytical computations and performing mathematical 
transformations. This makes it possible to simplify complex functional relationships consisting of 
polynomial, trigonometric, exponential, logarithmic components, and others [5].

When modeling dynamic processes, numerical optimization methods based on iterative algorithms 
are used in combination with analytical algorithms that include mathematical transformations and 
routine operations requiring computational automation by means of symbolic mathematics. Numerical 
and analytical computations that lead to identical results in modeling are not only useful but, in many 
applications, necessary [6]. When modeling dynamic systems and algorithmizing computational processes 
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using the Symbolic Math Toolbox, it is necessary to satisfy the requirements related to the syntax of 
package functions, the creation of symbolic objects, and the transition to the numerical domain, among 
others. The proposed optimization algorithm, its implementation method, and the performed calculations 
are aimed at partially solving this problem.

Symbolic computations in control problems make it possible to obtain direct analytical relationships 
between controller parameters, object parameters, and desired models of closed-loop systems, while 
reducing the labor intensity of analytical transformations in the process of modeling and searching 
for optimal solutions [7]. Due to the complexity of analytical transformations, such solutions are often 
implemented for systems of relatively low dimensionality, while parameters that are less subject to 
variation are assigned in numerical form. As a result, polynomial equations take on a combined analytical 
and numerical form. Certain operations can be performed in the presence of formulas with symbolic 
coefficients and completed by numerical calculations with graphical representations of implicitly defined 
functions. In such cases, analytical solutions can be obtained using symbolic tools.

Methods and Materials
The control problem of a nonlinear dynamic system consists in finding the minimum:

	 J x t t L x t u t t dtf f
t

t f
� ��( ( ), ) + ( ( ), ( ), )

0

	 (1)
for the system
	 x t f t x t u t t t t x t xf( ) = ( ( ), ( )),  ( ) =, , , ,∈[ ]

0 0 0 	 (2)

where x(t) ∈ Rn — the state; u(t) ∈ Rm — the control; L(x, u, t) — the running values of the performance 
criterion (e.g., operating costs); Ψ(x(tf ), tf) — the terminal cost at the final time instant (a scalar quantity).

Assume that the function f(t,x(t),u(t))f(t, x(t), u(t))f(t,x(t),u(t)) is continuous with respect to the state 
and control variables, and that there exists a control u(t)=u∗(t)u(t) = u^*(t)u(t)=u∗(t) that transfers the system 
from the given initial state x(t0)x(t_0)x(t0) to the terminal state x(tf)x(t_f)x(tf) while satisfying the necessary 
optimality conditions.

If linearization of equations (1) and (2) is admissible, and it is possible to construct an adequate (within 
specified limits) matrix model in the state space, then for time-invariant systems the tools for automating 
computations in the time and frequency domains can be applied. In this case, the modeling process is 
significantly simplified due to efficient methods for integrating differential equations in a standard matrix 
form [8]. Thus, for state-space models, the optimization problem can be formulated in the following form: 

	 min ;J x t Sx t x t Qx t u Ru t dtT
f f

T

t

t
T

f

� �
1

2

1

2
0

( ) ( ) + ( ) ( ) + ( ))( 	 (3)

	
                 

     

x t Ax t Bu t
x x u t K t

( ) ( ) ( );

( ) , ( ) , [

� �
� � �0

0
tt t tf0 0

0, ],   ,� 	 (4)

where x(t) и u(t) are piecewise-continuous state and control vectors, respectively.
The state and control matrices A и B have appropriate dimensions, x(0) — denotes the initial state. 

The set K ⊆ Rm is closed. The terminal time tf is specified, for which the terminal state x(tf) may also be 
prescribed. The matrices Q, S ∈ Rn × m are positive semidefinite.

It is now possible to formulate the necessary optimality conditions for the minimization criterion (3). 
The key point in deriving the necessary conditions is that, by means of the Hamiltonian, the functional 
minimization problem for the function H(x,p,u,t)H(x,p,u,t)H(x,p,u,t) is transformed into a static optimization 
problem [9]. Taking into account the system dynamics (4), the Hamiltonian is constructed as follows:

	 H x t p t u t t x Qx t u Ru t p Ax t Bu tT T T
( ( ), ( ), ( ), ) ( ) ( ) [ ( ) ( )   � � � �

1

2

1

2
 ]], 	 (5)

где p(t) — the adjoint state variable. 
As a result, based on equation (5), we obtain: 

	 x t H
p t

Ax t BR B p tT
( )

( )
( ) ( );�

�
�

� � �1 	  (6)
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p t H

x t
Qx t A p tT

( )
( )

( ) ( );� �
�
�

� � � 	 (7)

	 u t H x t p t u t t u t K t t f( ) arg min ( ( ), ( ), ( ), ), ( ) , ];� � � �   0 	 (8)

	    p t Sx t x xf f( ) ( ), ( ) .= =0
0 	 (9)

Equations (6)–(9) represent a two-point boundary value problem, in which the initial value of the 
state x(t) is x(0) = x0, and the corresponding condition for the adjoint variable is p(t) -p(tf) = Sx(tf). Its solu-
tion is obtained in symbolic mathematics format.

The application of specific optimization methods requires appropriate mathematical support [10]. 
The Symbolic Math Toolbox is intended for performing symbolic computations, which is possible provided 
that the syntax of the functions used is satisfied [11]. Symbolic variables in MATLAB are declared using 
the syms operator, followed by a list of identifiers separated by spaces, which are converted into symbolic 
variables.

The properties of symbolic variables are taken into account when performing analytical 
transformations of systems of equations and inequalities written using them. To convert numerical or 
string values of functions into symbolic expressions, the syms function is used. When analytically 
solving a system of equations in symbolic form, it should be represented as a one-dimensional array 
whose elements are individual equations.

Taking the above into account, an analytical solution of the control problem for a dynamic object 
based on the minimum control energy criterion is considered in the Symbolic Math Toolbox format and 
compared with a numerical solution in the CVX environment [12]. For definiteness of computations, 
a dynamic object in the state space with the following matrices is selected:

	 A B C D�
�

�

�
�

�

�
� �

�

�
�
�

�
� � � � �

0 1

0 1

0

1
1 0 0, , , .      	 (10)

Assume that it is required to minimize the performance criterion:

J u u t dt
t

t f
( ) ( ) ,� �

1

2
0

2

subject to the constraints defined by object (10) under the specified boundary conditions:

x x t t t t t cT T
f f( ) , ( ) , [ , ], , .0 0 0 2 5 2 0 2

0 0
� � � � � � � � �        

The solution is obtained using the MATLAB file sah051dd.m, which incorporates symbolic math-
ematics functions:

% sah051dd.m. Символьные вычисления в оптимальном управлении
% 1. Уравнения состояния
syms x1 x2 p1 p2 u t 
Dx1 = x2;
Dx2 = -x2 + u;
% 2. Текущее значение критерия качества – символьный объект
syms g;
g = 1/2*u^2; 
% 3. Гамильтониан
H = g + p1*Dx1 + p2*Dx2;
% 4. Уравнения косостояния
Dp1 = - diff(H,x1);
Dp2 = - diff(H,x2);
% 5. Определение управления u
du = diff(H,u);
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u_u = solve(du,u);
%======================================
% 6. Подстановка u во второе уравнение состояния
Dx2 = subs(Dx2, u, u_u);
%======================================
% 7. Необходимые условия оптимальности в терминах символьной математики. 
% Введение граничных условий. Интегрирование дифференциальных уравнений. 
syms x1(t) x2(t) p1(t) p2(t)
eqns=[diff(x1,t)==x2,diff(x2,t)==-p2-x2,diff(p1,t)==0,diff(p2,t)==p2-p1];
S=dsolve(eqns,x1(0)==0,x2(0)==0,x1(2)==5, x2(2)==2);
%------------------------------------------------
% 8. Общее решение (без граничных условий) с постоянными интегрирования
S1=dsolve(eqns)
%-------------------------------------------------
% Графические построения
t1=0:0.5:2;
X1=S.x1;
X2=S.x2;
P_2=S.p2
fplot(X1,X2,[0 2]),grid

The file consists of several sections:
% sah051dd.m. Symbolic computations in optimal control
% 1. State equations
syms x1 x2 p1 p2 u t 
Dx1 = x2;
Dx2 = -x2 + u;

% 2. Current value of the performance index as a symbolic object
syms g;
g = 1/2*u^2; 

% 3. Hamiltonian
H = g + p1*Dx1 + p2*Dx2;

% 4. Costate equations
Dp1 = - diff(H,x1);
Dp2 = - diff(H,x2);

% 5. Determination of the control u
du = diff(H,u);
u_u = solve(du,u);

%======================================
% 6. Substitution of u into the second state equation
Dx2 = subs(Dx2, u, u_u);
%======================================
% 7. Necessary optimality conditions in terms of symbolic mathematics.
%    Specification of boundary conditions. Integration of differential 
% equations.
syms x1(t) x2(t) p1(t) p2(t)
eqns=[diff(x1,t)==x2,diff(x2,t)==-p2-x2,diff(p1,t)==0,diff(p2,t)==p2-p1];
S=dsolve(eqns,x1(0)==0,x2(0)==0,x1(2)==5, x2(2)==2);

%------------------------------------------------
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% 8. General solution (without boundary conditions) with integration 
% constants
S1=dsolve(eqns)

%-------------------------------------------------
% Graphical representations
t1=0:0.5:2;
X1=S.x1;
X2=S.x2;
P_2=S.p2
fplot(X1,X2,[0 2]),grid

The file consists of several sections. In the first section, symbolic variables are introduced and the 
system dynamic equations are formulated. In the second section, a symbolic object is introduced repre-
senting the current value of the performance index (the integrand of the cost functional). The third section 
presents the Hamiltonian, while the fourth section contains the differential equations of the costate vari-
ables. The fifth and sixth sections are intended for the formation of the expression Dx2D x_2Dx2.

The introduction of the necessary optimality conditions makes it possible to proceed to the 
solution of a two-point boundary value problem. For this purpose, in the seventh section, symbolic 
objects are introduced and a vector containing the system of differential equations is formed. The 
solution of this system is obtained using the dsolve function under the specified boundary conditions. 
The analytical solutions of the problem are represented by the array S. The symbolic equations ex-
tracted from the array S

X1 = S.x1, X2 = S.x2 и P2 = S.p2 по схеме X1 = vpa(X1,5) have the following form:

X1 = 7.2918*t + 6.6983*exp(–1.0*t) – 0.59348*exp(t) – 6.1048;

X2 =7.2918 – 0.59348*exp(t) – 6.6983*exp(–1.0*t);

P2 = 1.18696*exp(t) – 7.29179.

Since the control is given u = – p2, we obtain 

u = 7.29179 – 1.18696*exp(t).

The general solution is represented by the array S1. In the absence of boundary conditions, the 
state equations contain integration constants C1, C2, C3 и C4, which are subject to determination. After 
extracting these equations from the array S1 the following expressions are obtained:

X1 = (C3*exp(t))/2 – C4*t – C1 – (C2*exp(–t)) / 2;

X2 = (C3*exp(t))/2 – C4 + (C2*exp(–t))/2.

Let us introduce the vector С = [С1 С2 С3 C4]'. Then, the following equations can be used to deter-
mine the integration constants:
	 X1 = [–1/2, –exp(–t)/2, exp(t)/4, –t/2] * C;	 (11)
and
	 X2 = [exp(–t) / 2, exp(t)/4, –1/2] * [C2 C3 C4]'.	 (12)

Equation (11) allows determining all components of the vector C. According to equation (12), only 
the components subject to evaluation are C2 C3 и C4. Для оценки сформируем матрицы To perform the 
evaluation, the following matrices are formed H1 и H2. The components of the equations given in paren-
theses are used to obtain numerical values over the time interval t from zero to 2 s. A time step of 0.05 s is 
used for the computations. As a result, the following matrices are obtained H1 и H2 of appropriate dimen-
sions (41 × 4) and (41 × 3) respectively. For the evaluation, the CVX format is used, which allows, based 
on the norm norm(H1*C1 – X1') to obtain numerical values of the vector C.
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A fragment of the solution in MATLAB code is presented below:

t=0:0.05:2;
H1=[]; H2=[];
for t=0:0.05:2;
    h1=[-1/2 -exp(-t)/2 exp(t)/4 t/2];
    h2=[exp(-t)/2 exp(t)/4 1/2];
    H1=[H1;h1];
    H2=[H2;h2];
end
H1; H2;
% Решение в CVX-формате.
cvx_begin
variable C1(4)
minimize(norm(H1*C1-X1',2))
subject to
cvx_end
cvx_begin
variable C2(3)
minimize(norm(H2*C2-X2',2))
subject to
cvx_end
C1;         C2;          x1m=H1*C1;         x2m=H2*C2;
     [X1' x1m X2' x2m]

The following solutions are obtained:
according to formula (11) 

С11 = [12.2097   –13.3966   –2.3739   14.5836];
according to formula (12)

С12 = [–13.3966   –2.3739   14.5836].

The graphs shown in Fig. demonstrate the equivalence of the solutions under the imposed boundary 
conditions X1(0) = 0, X2(0) = 0, X1(2) = 5, X2(2) = 2.

Fig. 1. Time evolution of the state variables under the control action
 X1, X2 и x1m, x2m from the arrays S и S1 after substituting the integration constants
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The file intended for solving optimal control problems with various boundary conditions, which 
are specified in the line S of the seventh section, was used to obtain analytical functions in symbolic 
computation format, followed by the construction of the graphs shown in Fig. 2.

а) b)

c) d)

Fig. 2. System control under different boundary conditions
а — X1(0) = 0; X2(0) = 0; X1(2) = 5; X2(2) = 2; b — X1(0) = 0; X2(0) = 0; X1(2) = 2.5;

 X2(2) = 1.5; c — X1(0) = -1; X2(0) = 0; X1(2) = 5; X2(2) = 2; d — X1(0) = –1.5;  
X2(0) = 1; X1(2) = 2.5; X2(2) = 1/55

The main result of the computations is the derivation of analytical solutions for all state and control 
variables expressed in symbolic form. Below, the solutions obtained for the system with boundary 
(terminal) conditions are presented

X1(0) = –1.5; X2(0) = 1; x1(2) = 2. 5; X2(2) = 1.55,

which corresponds to Fig. 2(g). The analytical (exact) solutions expressed in the symbols of the Symbolic 
Math Toolbox are given below:

X1 = t*((29*exp(2))/80 + 131 / 80) – (84*exp(2) + 29*exp(4) – 69)/(80*(exp(2) – 1)) – 

– (exp(t)*(29*exp(2) – 51)) / (80*(exp(2) – 1)) + 

	 + (exp(–t)*exp(2)*(29*exp(2) – 7)) / (80*(exp(2)  – 1))
	 (13)

X2 = (29*exp(2)) / 80 – (exp(t)*(29*exp(2) – 51)) / (80*(exp(2) – 1)) – 

	 – (exp(–t)*exp(2)*(29*exp(2) – 7)) / (80*(exp(2) – 1)) + 131/80 	 (14)

	 u = –((exp(t)*(29*exp(2) – 51)) / (40*(exp(2) – 1)) – (29*exp(2)) / 80 – 131/80).	 (15)

For practical calculations, it is convenient to switch to a numerical format by applying the vpa 
function with the required number of significant digits specified for visual evaluation. The numerical 
counterparts of expressions (13)–(15) are given below.: 

X1 = vpa(X1,5);

	 X1 = 4.316*t  +  2.9966*exp(–1.0*t) – 0.31946*exp(t) – 4.1771; 	 (16)

X2 = vpa(X2,5);
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	 X2 = 4.316 – 0.31946*exp(t) – 2.9966*exp(–1.0*t); 	 (17)

u = vpa(u,5);

	 u = 4.316 – 0.63892*exp(t).	 (18)

Identical analytical relationships (13) and (16), (14) and (17), as well as (15) and (18), have been 
obtained. It should be noted that with an increase in the dimensionality and complexity of the dynamic 
system, only the exact solution of the problem is of practical interest [13].

Results
Discrete control of a ship dynamic system is performed using the A. N. Krylov matrix. For this 

purpose, a sequence of solutions in a linear time-invariant (LTI) system is considered with a discretization 
step  T, that is significantly smaller than the time constants of the controlled object. The state matrix Ad 
and the control matrix Bd of the discrete-time system are assumed to be known. Under these conditions, 
the following step-by-step representation is obtained

x(1) = Ad·x(0) + Bd·u(0);

x(2) = Ad·x(1) + Bd·u(1);

……………………….

x(n) = Ad·x(n – 1) + Bd·u(n – 1),  n = 0,1, 2, 3,…, N;

………………………..

 x(N) = Ad·x(N – 1). 

The above equations can be written in matrix form for given initial x(0) and terminal x(N) values 
of the state variable [1]:

	 x N A x A B A B A B B Ud
N

d
N

d d
N

d d d d( ) ( ) [ , , ..., , ] ,� � � � � � �� �
0

1 2
     	 (19)

where the control vector is 

 U u N u N u u T� � �[ ( ), ( ), ..., ( ), ( )] .1 2 1 0    

Let us introduce the notation

	 G A B A B A B Bd
N

d d
N

d d d d� � � �� �
[ , , ..., , ].

1 2
    	 (20)

Then, taking into account (19) and (20), the optimal estimate of the vector U*, which ensures minimum 
energy losses when transferring the object from the initial state to the terminal state, is determined using 
the Moore–Penrose pseudoinverse:

	 U G x N A xd
N*

[ ( ) ( )].� � � ��
0  	 (21)

Since expression (20) represents the A. N. Krylov matrix, which belongs to the gallery of special 
matrices available in the MATLAB environment, it is introduced into the computational procedure in 
accordance with the following syntax:

Kr = gallery('krylov', Ad, Bd, N).

The application of the A. N. Krylov matrix in computational environments makes it possible to 
fundamentally change the modeling process, to construct an optimal estimation system for the state vector 
variables, and ultimately to use CVX technologies for generating trajectory processes of the state and 
control variables in the optimal mode.

The MATLAB script sah051hhK.m for solving the problem of optimal discrete-time system 
synthesis is presented below:



В
ы

п
ус

к
4

960

 2
02

5 
го

д.
 Т

ом
 1

7.
 №

 6

% sah051hhK.m. 
%============================================
% 1. Исходные данные
A=[0 1;0 -1]; B=[0 1]'; C=[1 0]; D=0;
sys=ss(A,B,C,D)
A=sys.A; B=sys.B
%============================================
% 2. Переход к дискретной модели 
T=0.1;
[Ad,Bd]=c2d(A,B,T)
% 3. Применение матрицы Крылова для численного решения в формате CVX
N=20;
Kr=gallery('krylov',Ad,Bd,N)
%================================================
% 4. Оценка вектора w и формирование минимизируемой нормы 
s1=inv(Kr*Kr');
s2=s1*Kr;
w1=[5 2]*s2;
w=w1'
%================================================
% 5. Оценка вектора управления и расчет переменных состояния
% по дискретной модели
m1=N;
cvx_begin
  variable u(m1)
 minimize(norm(u-w,2));
    subject to
       cvx_end
       U=rot90(u,2);
 X=[];
 xa0=[0 0]';
 for p=1:20;
     if p<2
         x=Ad*xa0+Bd*U(1);
     else
         x=Ad*x+Bd*U(p);
     end
     X=[X x];
 end
 X=[xa0 X];
% 6. Графические построения
     k=0:20;
     U=[U(1);U];
         stairs(k,X','LineWidth',3);
     hold on
     stairs(k,U,'LineWidth',2),grid
     xlabel(' k*T,    T=0,1c.')
     ylabel(' X1, X2, U')
     title('Управление с применением матрицы А.Н. Крылова')
     hold off

The script is conditionally divided into several sections. The first section presents the initial data. In 
the second section, the transition from the continuous-time model to the discrete-time model is performed 
with a discretization step T=0.1 s. The third section specifies the number of steps N=20 and selects the 
Krylov matrix. In the fourth and fifth sections, the estimation of the column vector w is carried out. The 
estimation of this vector represents the most computationally intensive part of the procedure, which is 
based on solving equation (21).
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The estimation of w determines the correctness of fi tting the elements of the control vector and 
justifi es the introduction of the norm(u – w) for computing the optimal operating mode within the cvx_
begin – cvx_end. In essence, the solution obtained using the least-squares method is reformulated as 
a convex programming problem, which enables computations to be performed within an iterative loop. 
This is followed by the computation of the system trajectory in the optimal mode. To ensure the required 
sequence of the optimal control action applied to the system, a vector rotation operator that rotates the 
control vector u by 180° is used.

The sixth section contains operators that defi ne the graphical representations. The stairs operator 
is used, according to which only a limited number of graphical functions can be employed to control 
line widths. Therefore, graph superposition is implemented using the hold on operator, while exiting the 
superposition mode is ensured by the hold off  operator. The graphical representation of the solution of the 
optimal boundary-value problem is shown in Fig. 3.

Fig. 3. Trajectories of the discrete-time control system

As can be seen from Fig. 3, discrete control of the ship dynamic system in the optimal mode has been 
implemented. Thus, the application of the A. N. Krylov matrix made it possible to correctly fi t the elements 
of the control vector and to use CVX technologies for the optimal estimation of the state variable vector.

Discussion
This study considers the application of analytical solutions to optimization problems based on 

symbolic mathematics tools. The use of new methods and means of digital signal processing employing 
CVX technologies and solvers intended for convex programming problems contributes to the improvement 
and further development of optimal control system design technologies [14].

The solutions proposed in this paper regarding the application of analytical methods in control 
problems of technological processes and production systems in water transport facilities may be of interest 
to specialists using digital technologies to enhance the effi  ciency and quality of problem solving.

Conclusions
Based on the conducted research, the following conclusions can be drawn:
1. Analytical solutions of optimization problems using symbolic mathematics functions constitute 

a reliable approach to improving the effi  ciency and quality of designing ship dynamic systems for 
stabilization, positioning, monitoring, and course control.

2. The application of the A. N. Krylov matrix in digital optimization problems is a necessary 
condition for improving modeling processes and advancing computer technologies intended for the 
analysis and synthesis of high-dimensional dynamic systems.
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3.	The use of CVX technologies for improving computational processes, designed to solve convex 
programming problems and to synthesize dynamic systems based on linear matrix inequalities adapted to 
linear and quadratic programming techniques, significantly expands the class of solvable problems within 
the modern MATLAB computational environment.

4.	The presented quantitative estimates of solutions obtained using symbolic computations confirm 
the correctness of the proposed approaches and demonstrate their high efficiency.
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APPENDIX

MATLAB Codes and Figure Explanations
This appendix provides concise explanatory notes for the MATLAB codes and the corresponding 

figures presented in the paper. Due to the formal programming syntax, the MATLAB scripts are not 
translated verbatim; instead, their functionality and relation to the graphical results are described.

MATLAB Codes
The MATLAB script sah051dd.m implements an analytical solution of a continuous-time optimal 

control problem using the Symbolic Math Toolbox. The script defines the system state equations, 
formulates the performance index and the Hamiltonian, derives the costate equations, and determines 
the optimal control law. The resulting two-point boundary value problem is solved symbolically using the 
dsolve function. Exact analytical expressions for the state, costate, and control variables are obtained and 
subsequently visualized.
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A supplementary code segment applies CVX-based convex optimization to estimate the integration 
constants of the general symbolic solution. This procedure ensures consistency between symbolic analytical 
solutions and numerical boundary conditions.

The script sah051hhK.m is used for the synthesis of an optimal discrete-time control system. The continuous 
model is discretized, and the A. N. Krylov matrix is employed to construct an optimal control sequence. The 
estimation of the control vector is formulated as a convex optimization problem solved using CVX. The script 
generates optimal state and control trajectories in discrete time.

Figure Explanations
Figure 1 illustrates the time evolution of the state variables under the action of the optimal control 

input obtained from the symbolic solution of the continuous-time problem. The figure confirms the 
consistency of the analytical solution with the imposed boundary conditions.

Figure 2 presents control and state trajectories for different boundary conditions, demonstrating the 
flexibility of the symbolic solution framework and the exact analytical dependence of the system response 
on the prescribed constraints.

Figure 3 shows the trajectories of the discrete-time control system synthesized using the Krylov 
matrix and CVX optimization. The figure confirms the correctness of the discrete optimal control 
formulation and its agreement with the theoretical results.

FIGURE CAPTIONS (ENGLISH VERSION)
Figure 1.

Time evolution of the state variables under the action of the control input u.

Legend:
X₁, X₂ — state variables
u — control input
Axes:
x-axis: Time, t (s)
y-axis: X₁, X₂, u
Text inside the figure:
Integration constants:
C₁ = 12.2097
C₂ = 13.3966
C₃ = 2.3739
C₄ = 14.5836

Figure 2.

Control of the dynamic system under different boundary conditions.

Subfigures:
(a) State trajectories X₁(t) and X₂(t)
(b) Control input u(t)
(c) Costate variable p₂(t)
(d) State trajectories corresponding to alternative boundary conditions

Axes (for all subfigures):
x-axis: Time, t (s)
y-axis: State, costate, or control variables
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Note:
The figure illustrates the analytical solutions obtained 
using symbolic computations for various bound-ary conditions.

Figure 3.

Trajectories of the discrete optimal control system.

Legend:
X₁(k), X₂(k) — discrete state variables
u(k) — discrete control input

Axes:
x-axis: Discrete time step, k
y-axis: State and control variables

Note:
The figure demonstrates the implementation of optimal discrete control 
using the A. N. Krylov matrix and CVX-based optimization.

Remarks
The presented MATLAB codes serve as computational illustrations of the proposed methods, while 

the fig-ures provide visual confirmation of the analytical and numerical results. Together, they demonstrate 
the ef-fectiveness of combining symbolic computations with numerical optimization techniques for solving 
opti-mal control problems in water transport systems.
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