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ONNTUMU3ALINA CYAOBBIX IUHAMHNYECKUX CUCTEM
N TEXHOJIOI'MYECKHUX ITPOLHECCOB HA BOOJHOM TPAHCIIOPTE
C IPUMEHEHUEM CUMBOJIBHBIX BBIUNCJEHUM B CPEJIE MATLAB

C. O. BapsILTHHKOB, B. B. Caxapos, A. A. YepTkoB

$I'bBOY BO JYMP® umenn anmupasa C. O. Makaposav,
Cauxkr-IletepOypr, Poccuiickasa Peneparms

Temoti uccredosanus s6aemcs nogvluleHue dPHexmueHocmu u MOUHOCMU peuleHus 3a0ay ONMUMATbHO-
20 YNpasienus mexHoI02UYeCKUMU NPOYECCamu i nPpou3800CmMeami Ha 600HOM MPAHCHOPME 8 YCI0BUAX YUPPOosol
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mpancghopmayuy ¢ npuUMeHeHueM UHCMPYMEHMO8 CUMBONbHOU MameMamuxuy. B pabome pewena 3a0ava onmumans-
HO20 YNPAGIeHUs HETUHETIHbIM OUHAMUYECKUM 00BEKIMOM CPeOCmeamu Yu@posuzayuu 6 Ko0ax CUMBONbHOU mame-
mamuku. TIpednocennvitl BbIMUCTUMENbHBLIL AN2OPUMM NPeOYCMampusaenm anaiumuieckoe peutenue oug@epenyu-
ANIbHBIX YPABHEHUTI nymem JTUHeapUu3ayuy u UHMe2puposanus ux 6 cmanoapmuom mampuynom gopmame. Coenacro
2aMUTLMOHUAKY, 00ecnedusawemy nepexod om (QYHKYUOHAILHOU MUHUMUSAYUL K CHIAMUYECKOU ONMUMU3AYUL,
NONYy4eH 6eKMop YNpasienus, a makice obecneven nepesoo cucmemvl ypaguenutl 6 cumsonvhuiii popmam. C yuemom
cunmarcuca Qynkyul ebloeien 610Kk OUHAMUKU CUCIIEMbL 8 AHATUMUYECKOM GUOe, d MAKIce 00PA306aH peuamelb,
cocmosiuyutl u3 OI0KA OUHAMUKU U SPAHUYHBIX YCOBULL HA NepeMeHHble COCMOAHUSL 6 HaYale U N0 OKOHYAHUU 8PEMeHU
pewenus. B pezynomame cocmasnenvl ypasHenust 0Jisi NePEMEHHbIX COCMOSHUS U YRPAGLeHUsl, Komopule OJis KO-
YeCMBEHHbIX OYEHOK U epapuyeckoll unmepnpemayuy c60000HO nepesooamcsi ¢ 4uciogou gopmam. C nomowo
npoepamm 6 kooax MATLAB evinonnervl OyeHKU uemvlpex Kpaeswlx YCl08ull, RPpUeeoeHHbIX Ha epagpuxax. Omauuue
NPEONIONCEHHO20 ANCOPUMMULECKO20 PeWeHUs KPAesoll 3a0adu Om CYuecmsylowux petueHuti cocmoum 6 npume-
HEeHUU AHAIUMUYecKoll MOOeIU 6 CUMBOIbHbIX MePMUHAx. /Juckpemuvlil ananoe mooeiu noiyyen na baze mampu-
yvt A. H. Kpoinosa ¢ oyenxotl Hopmol u ynpasienus ¢ popmame CVX. Ilpusedenrnvle pewienus no3gosiom coeiams
861600 0 KOPPEKMHOCMU NPEOCMABILEHHbIX ANOPUMMOB U NPOSPAMM, d MAKICE O YeaecO0OPA3HOCU NPUMEHEHUS
07151 MOOEUPOBAHUS CUCEM AHATUMUYECKUX MEMOO08 8 COYEMANULL C YUCTCHHBIMIL.

Kurouesvie crosa: onmumuzayus, aiecopumm, eamMuibmoHUat, Kpaegule Ycio8us, CUMBOIbHbLI (popmam Gul-
yycnenul, anarumuieckoe pewenue, mampuya A. H. Kpvinosa, mooenuposanue.

Juast uuTUupoBaHus:

bapviwnukos C. O. ONTUMHU3AIUS CYIOBBIX JHHAMHUYECKNX CUCTEM M TEXHOJIOTMUYECKHX ITPOLIECCOB HA BO-
JTHOM TPaHCIIOPTE ¢ MPUMEHEHHEM CHMBOJBHBIX BeIuucieHuil B cpere MATLAB / C. O. BapsimHuKoB,
B. B. Caxapos, A. A. UeptkoB // BectHuk ['ocyapcTBEHHOTO YHUBEPCUTETa MOPCKOT'O M PeUHOT0 (hIoTa
nvenu angmupana C. O. Makaposa. — 2025. — T. 17. — Ne 6. — C. 951-964. DOI: 10.21821/2309-5180-2025-
17-6-951-964. — EDN TPENTX.

(Introduction)

Many practical optimization problems arising in the modeling of dynamic control processes of
shipboard objects and production systems in water transport require adaptation to specific models using
basic computational systems [1]. As computational tools are regularly updated, new algorithms and
software have emerged whose computational properties have significantly improved in terms of solution
speed and reliability for applied problems, which has created a need to interpret these new solutions and
to develop methods for their effective application [2]. In this context, special attention should be given
to the MATLAB computational environment, which is one of the most powerful universal integrated
systems of computer mathematics [3]. Its toolboxes, in addition to existing computational tools, have
been supplemented with solvers in CVX format capable of working with models containing linear matrix
inequalities, which has not only expanded the class of solvable mathematical programming problems
but has also led to new approaches to the synthesis of closed-loop systems possessing asymptotic
stability [2]. Particular attention should be paid to the potential capabilities of the symbolic computing
package (Symbolic Math Toolbox), on the basis of which a computational algorithm for the synthesis of
an optimal dynamic system has been developed.

Symbolic computations are referred to as analytical, since the initial data for computations are
specified in the form of analytical functional relationships, and the computation results are presented in
symbolic (analytical) form [4]. When boundary conditions and numerical values of parameters of the
systems under study are specified, the obtained solutions correspond to particular cases of the results
of symbolic computations. The file system of the Symbolic Math Toolbox imparts qualitatively new
properties to the process of automating complex analytical computations and performing mathematical
transformations. This makes it possible to simplify complex functional relationships consisting of
polynomial, trigonometric, exponential, logarithmic components, and others [5].

When modeling dynamic processes, numerical optimization methods based on iterative algorithms
are used in combination with analytical algorithms that include mathematical transformations and
routine operations requiring computational automation by means of symbolic mathematics. Numerical
and analytical computations that lead to identical results in modeling are not only useful but, in many
applications, necessary [6]. When modeling dynamic systems and algorithmizing computational processes
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using the Symbolic Math Toolbox, it is necessary to satisfy the requirements related to the syntax of
package functions, the creation of symbolic objects, and the transition to the numerical domain, among
others. The proposed optimization algorithm, its implementation method, and the performed calculations
are aimed at partially solving this problem.

Symbolic computations in control problems make it possible to obtain direct analytical relationships
between controller parameters, object parameters, and desired models of closed-loop systems, while
reducing the labor intensity of analytical transformations in the process of modeling and searching
for optimal solutions [7]. Due to the complexity of analytical transformations, such solutions are often
implemented for systems of relatively low dimensionality, while parameters that are less subject to
variation are assigned in numerical form. As a result, polynomial equations take on a combined analytical
and numerical form. Certain operations can be performed in the presence of formulas with symbolic
coefficients and completed by numerical calculations with graphical representations of implicitly defined
functions. In such cases, analytical solutions can be obtained using symbolic tools.

Methods and Materials
The control problem of a nonlinear dynamic system consists in finding the minimum:

J=W(x(t,),t,) + § LCx(0), u(e), e (1)
for the system o
X(f) = f(ta )C(t), u(t))’ te [toa t_/‘]a X(fo) = XO, (2)

where x(f) € R" — the state; u(f) € R™ — the control; L(x, u, f) — the running values of the performance
criterion (e.g., operating costs); Yx(@), 1) — the terminal cost at the final time instant (a scalar quantity).

Assume that the function f(t,x(t),u(t)f(t, x(t), u())f(t,x(t),u(t)) is continuous with respect to the state
and control variables, and that there exists a control u(t)=ux*(t)u(t) = u*(t)u(t)=ux(t) that transfers the system
from the given initial state x(t0)x(t_0)x(t0) to the terminal state x(tf)x(t_f)x(tf) while satisfying the necessary
optimality conditions.

Iflinearization of equations (1) and (2) is admissible, and it is possible to construct an adequate (within
specified limits) matrix model in the state space, then for time-invariant systems the tools for automating
computations in the time and frequency domains can be applied. In this case, the modeling process is
significantly simplified due to efficient methods for integrating differential equations in a standard matrix
form [8]. Thus, for state-space models, the optimization problem can be formulated in the following form:

minJ = %xr (7,)8x(t,)+ %tjf (x" ()Ox(t) +u" Ru(t))dt; 3)

(1) = Ax(t) + Bu(t);
x(0)=xp, u()=K, telty, 1,1, 1,=0, (4)

where x(f) u u(f) are piecewise-continuous state and control vectors, respectively.

The state and control matrices 4 u B have appropriate dimensions, x(0) — denotes the initial state.
The set K < R™ is closed. The terminal time l, is specified, for which the terminal state x(1)) may also be
prescribed. The matrices O, S € R" *™ are positive semidefinite.

It is now possible to formulate the necessary optimality conditions for the minimization criterion (3).
The key point in deriving the necessary conditions is that, by means of the Hamiltonian, the functional
minimization problem for the function H(x,p,u,t) H(X,p,u,t)H(X,p,u,t) is transformed into a static optimization
problem [9]. Taking into account the system dynamics (4), the Hamiltonian is constructed as follows:

H(x(®), p(t), u(t), t)= %xTQx(t) + %uTRu(t) + pT[Ax(t) + Bu(1)], (5)

rne p(f) — the adjoint state variable.
As aresult, based on equation (5), we obtain:

x(t)—ap(t) Ax(t)+ BR™ B’ p(¢); (6)

@ 9ol /| woj "ol gZ02



@ 2025 rop. Tom 17. Ne 6

BECTHUK

TOCYJAPCTBEHHOTO YHUBEPCUTETA
MOPCKOTO Y PEYHOTO ®JIOTA UMEHY ATIMUPATIA C. O. MAKAPOBA

oH
’ == —y N (7)
p() o) Ox(1) -4 p(1);
u(t)=arg min H(x(t), p(1), u(®), 1), u(t) e K, 0<t<t,]; (8)
pt,)=58x(t,), x(0)=x,. 9)

Equations (6)—(9) represent a two-point boundary value problem, in which the initial value of the
state x(?) is x(0) = x,, and the corresponding condition for the adjoint variable is p(?) —p(tf) = Sx(tf). Its solu-
tion is obtained in symbolic mathematics format.

The application of specific optimization methods requires appropriate mathematical support [10].
The Symbolic Math Toolbox is intended for performing symbolic computations, which is possible provided
that the syntax of the functions used is satisfied [11]. Symbolic variables in MATLAB are declared using
the syms operator, followed by a list of identifiers separated by spaces, which are converted into symbolic
variables.

The properties of symbolic variables are taken into account when performing analytical
transformations of systems of equations and inequalities written using them. To convert numerical or
string values of functions into symbolic expressions, the syms function is used. When analytically
solving a system of equations in symbolic form, it should be represented as a one-dimensional array
whose elements are individual equations.

Taking the above into account, an analytical solution of the control problem for a dynamic object
based on the minimum control energy criterion is considered in the Symbolic Math Toolbox format and
compared with a numerical solution in the CVX environment [12]. For definiteness of computations,
a dynamic object in the state space with the following matrices is selected:

A—O1 B—O c=[1 0], D=0
=lo _i" B=|, | €=It 9] p=0. (10)

Assume that it is required to minimize the performance criterion:
ty 1 )
J(u)=[=u~(t)dt,
o 2
subject to the constraints defined by object (10) under the specified boundary conditions:
x(0)=[0 0], x2)=[5 2], relt, t,1, 1,=0,1,=2c.

The solution is obtained using the MATLAB file sah051dd.m, which incorporates symbolic math-
ematics functions:

sah051dd.m. CuMBOJIbHBIE BBEUMCJIEHMS B OINTMMAJIbHOM yIIPaBJIEHUNM

o
°
o
o

1. YpaBHeHUsa COCTOSHUSA
syms x1 x2 pl p2 u t

Dxl = x2;

Dx2 = -x2 + u;

% 2. Tekylee 3HAUEHME KPUTEPMUS KadeCTBa — CUMBOJIBHBM OOBEKT
syms g;

g = 1/2*u"2;

% T'amMmnbeTOHMAH

H =g + pl*Dxl + p2*Dx2;

% 4. YpaBHEHMUS KOCOCTOSHUA

= - diff(H,x1);

= - diff(H,x2);

% 5. OnpemesieHMe yHnpaeJIeHUs U
du = diff(H,u);

w

g U
T O
N
I
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% 6. llomcTaHOBKAa U BO BTOPOE ypPaBHEHME COCTOSHUA

o

X

N
Il

subs (Dx2, u, u_u);

7. Heobxonumble YCIJIOBMA OITVMIMAJIBHOCTM B TEPMMHaAX CMMBOJIBHOM MaTeMaTUKMU.

o° o oo

BeeneHMe T'PaHMYHEIX YCJIOBUM. VHTerpupoBaHMe nubdepeHIlIMasIbHEIX yPaBHEHUN.
syms x1(t) x2(t) pl(t) p2(t)

eqgns=[diff (x1, t)==x2,diff (x2,t)==-p2-x2,diff (pl,t)==0,diff (p2,t)==p2-pl];
S=dsolve (eqgns, x1(0)==0,x2(0)==0,x1(2)==5, x2(2)==2);

% 8. OOmee pemenue (6e3 T'PAHWUUHBIX YCJIOBUM) C MNOCTOSHHBEIMY MHTETPUPOBAHUSA
Sl=dsolve (eqgns)

Q

3 I'padpnueckme MNOCTPOEHUHA
t1=0:0.5:2;
X1=S.x1;
X2=5.x2;
P 2=S.p2
fplot (X1,X2, [0 2]),grid
The file consists of several sections:
% sah051dd.m. Symbolic computations in optimal control
% 1. State equations
syms x1 x2 pl p2 u t
Dx1 = x2;
Dx2 = -x2 + u;

o\°

2. Current value of the performance index as a symbolic object
syms g;
g = 1/2*u”2;

% 3. Hamiltonian
H =g + pl*Dxl + p2*Dx2;

% 4. Costate equations
= - diff(H,x1);
= - diff(H,x2);

g g
o]
N
| |

$ 5. Determination of the control u
du = diﬁ(Hru);
u u = solve(du,u);

% 6. Substitution of u into the second state equation

a 9ol /| woj "ol gZ02

Dx2 = subs(Dx2, u, u u);

% 7. Necessary optimality conditions in terms of symbolic mathematics.
% Specification of boundary conditions. Integration of differential

% equations.

syms x1(t) x2(t) pl(t) p2(t)
eqgns=[diff (x1, t)==x2,diff (x2,t)==-p2-x2,diff (pl,t)==0,diff (p2,t)==p2-pl];
S=dsolve (egns, x1(0)==0,x%x2 (0)==0,x1(2)==5, x2(2)==2);
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8. General solution (without boundary conditions) with integration

o°  oP

constants
Sl=dsolve (eqgns)

% Graphical representations
t1=0:0.5:2;

X1=s.x1l;

X2=S.x2;

P 2=S.p2

fplot (X1,X2, [0 21),grid

The file consists of several sections. In the first section, symbolic variables are introduced and the
system dynamic equations are formulated. In the second section, a symbolic object is introduced repre-
senting the current value of the performance index (the integrand of the cost functional). The third section
presents the Hamiltonian, while the fourth section contains the differential equations of the costate vari-
ables. The fifth and sixth sections are intended for the formation of the expression Dx2D x 2Dx2.

The introduction of the necessary optimality conditions makes it possible to proceed to the
solution of a two-point boundary value problem. For this purpose, in the seventh section, symbolic
objects are introduced and a vector containing the system of differential equations is formed. The
solution of this system is obtained using the dsolve function under the specified boundary conditions.
The analytical solutions of the problem are represented by the array S. The symbolic equations ex-
tracted from the array S

X1 =S8xl1, X2=Sx2 u P2 =S.p2 no cxeme X1 = vpa(X1,5) have the following form:

X1 =7.2918%¢ + 6.6983*exp(—1.0%7) — 0.59348*exp(f) — 6.1048;
X2 =7.2918 — 0.59348*exp(f) — 6.6983*exp(~1.0%7);
P2 = 1.18696*exp(f) — 7.29179.

Since the control is given u = — p,, we obtain

u="7.29179 — 1.18696*exp(?).

The general solution is represented by the array S,. In the absence of boundary conditions, the
state equations contain integration constants C,, C,, C, u C,, which are subject to determination. After
extracting these equations from the array S, the following expressions are obtained:

X1 = (C*exp(0)2 - C*t - C, - (C,*exp(-1)) / 2;
X2=(Cy*exp(0))/2 — C, + (C,*exp(-1))/2.

e Let us introduce the vector C = [C| C, C, C,]". Then, the following equations can be used to deter-
=

~ mine the integration constants:

s X1 =[-1/2, —exp(-1)/2, exp(t)/4, —t/2] * C; (11)
:: and

(=]

é X2 = [exp(-1) / 2, exp(8)/4, -1/2] * [C, C, C|]". (12)
[—]

N

Equation (11) allows determining all components of the vector C. According to equation (12), only
m the components subject to evaluation are C, C, u C,. [lns ouenku cpopmupyem mMarpunsl To perform the
evaluation, the following matrices are formed H, u H,. The components of the equations given in paren-
theses are used to obtain numerical values over the time interval ¢ from zero to 2 s. A time step of 0.05 s is
used for the computations. As a result, the following matrices are obtained H, u H, of appropriate dimen-
sions (41 x 4) and (41 x 3) respectively. For the evaluation, the CVX format is used, which allows, based
on the norm norm(HI1*C1 — X1') to obtain numerical values of the vector C.
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A fragment of the solution in MATLAB code is presented below:

t=0:0.05:2;
H1=[]; H2=[];
for t=0:0.05:2;

hl=[-1/2 -exp(-t)/2 exp(t)/4 t/2];
h2=[exp(-t)/2 exp(t)/4 1/2];
H1=[H1;hl];
H2=[H2;h2];

end

H1; H2;

% Pemenme B CVX-dopmarTe.

cvx begin

variable C1 (4)

minimize (norm (H1*C1-X1"',2))

subject to

cvx_end

cvx_begin

variable C2(3)

minimize (norm (H2*C2-X2"',2))

subject to

cvx_end

C1l; C2; x1m=H1*C1; x2m=H2*C2;
[X1'" xIm X2' x2m]

The following solutions are obtained:
according to formula (11)

C,,=[12.2097 -13.3966 -2.3739 14.5836];
according to formula (12)
C,=[-13.3966 -2.3739 14.5836].

The graphs shown in Fig. demonstrate the equivalence of the solutions under the imposed boundary
conditions X1(0) = 0, X2(0) = 0, X1(2) = 5, X2(2) = 2.

Mepemetsinie cocTonHma B hopuatax S u 51
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Fig. 1. Time evolution of the state variables under the control action
X1, X2nx, ,x, from thearrays Swu S, after substituting the integration constants

1m?



2025 rop. Tom 17. Ne 6

BECTHUK

FOCYAAPCTBEHHOTO YHUBEPCUTETA
MOPCKOrO W PEYHOTO ®IOTA UMEHN ABAMUPANA C. 0. MAKAPOBA
The file intended for solving optimal control problems with various boundary conditions, which
are specified in the line S of the seventh section, was used to obtain analytical functions in symbolic
computation format, followed by the construction of the graphs shown in Fig. 2.

a) b)
i 5a=[0052] 5 Sb=[002.515]
i ™ Yy v g U
. —— L
=.4 X2 =.; %5 h %
o, \ B <
S x1\ %1 X1~
0 \\
s
0.5 1 1.5 z 0.5 1 1.5 2
Bpema:tc Bpema:tc
c) d)
Sc=[-1052] . Sd=[-1.5125158)
4
st {U mi‘"‘w\é/“U
s |- T—= 7_‘< s 2 <
2 )/- \ 2 x N\
<0 \ %0
X1 b
5 2
05 1 1.5 2 0 05 1 1.5 2
Spemzitc Bpema:tc

Fig. 2. System control under different boundary conditions
a— X1(0) = 0; X2(0) = 0; X1(2) = 5; X2(2) = 2; b — X1(0) = 0; X2(0) = 0; X1(2) = 2.5;
X2(2) = 1.5; ¢ — X1(0) = -1; X2(0) = 0; X1(2) = 5; X2(2) =2; d — X1(0) = -1.5;
X2(0) = 1; X1(2) = 2.5; X2(2) = 1/55

The main result of the computations is the derivation of analytical solutions for all state and control
variables expressed in symbolic form. Below, the solutions obtained for the system with boundary
(terminal) conditions are presented

X1(0) =-1.5; X2(0) = 1; x1(2) = 2. 5; X2(2) = 1.55,

which corresponds to Fig. 2(g). The analytical (exact) solutions expressed in the symbols of the Symbolic
Math Toolbox are given below:

X1 =1*((29*exp(2))/80 + 131 / 80) — (84*exp(2) + 29*exp(4) — 69)/(80*(exp(2) — 1)) —

— (exp(1)*(29*exp(2) — 51)) / (80*(exp(2) — 1)) +

13
+ (exp(-0)*exp(2)*(29*exp(2) — 7)) / (80*(exp(2) — 1)) ()
X2 =(29*exp(2)) / 80 — (exp(£)*(29*exp(2) — 51)) / (80*(exp(2) — 1)) —
— (exp(—{)*exp(2)*(29%exp(2) — 7)) / (80*(exp(2) — 1)) + 131/80 (14)
U = —((exp(H)*(29%exp(2) — 51)) / (40*(exp(2) — 1)) — (29%exp(2)) / 80 — 131/30). (15)

For practical calculations, it is convenient to switch to a numerical format by applying the vpa

@ function with the required number of significant digits specified for visual evaluation. The numerical

counterparts of expressions (13)—(15) are given below.:
X1 =vpa(XL,5);
X1=4316% + 2.9966%exp(—1.0*t) — 0.31946*exp(t) —4.1771; (16)
X2 =vpa(X2,5);
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X2 =4.316—0.31946*exp(t) — 2.9966*exp(—1.0%*t); (17)
u = vpa(u,5);
u=4.316—-0.63892*exp(t). (18)
Identical analytical relationships (13) and (16), (14) and (17), as well as (15) and (18), have been

obtained. It should be noted that with an increase in the dimensionality and complexity of the dynamic
system, only the exact solution of the problem is of practical interest [13].

Results
Discrete control of a ship dynamic system is performed using the A. N. Krylov matrix. For this
purpose, a sequence of solutions in a linear time-invariant (LTI) system is considered with a discretization
step 7, that is significantly smaller than the time constants of the controlled object. The state matrix 4,
and the control matrix B, of the discrete-time system are assumed to be known. Under these conditions,
the following step-by-step representation is obtained

x(1)=4,x(0) + B u(0);

x(2)=A,;x(1) + B u(l),

x(N)=A,;x(N—-1).
The above equations can be written in matrix form for given initial x(0) and terminal x(N) values
of the state variable [1]:

x(N)—A) -x(0)=[4)"-B,, 4)*-B,, .., 4,-B,, B,]-U, (19)
where the control vector is
U =[u(N -1), u(N =2), ..., u(l), u(0)]".
Let us introduce the notation
G=[4)"-B,, 4] B,, .., 4,-B,, B,]. (20)
Then, taking into account (19) and (20), the optimal estimate of the vector U", which ensures minimum

energy losses when transferring the object from the initial state to the terminal state, is determined using
the Moore—Penrose pseudoinverse:

U =G -[x(N)- 4] - x(0)]. (21)
Since expression (20) represents the A. N. Krylov matrix, which belongs to the gallery of special

matrices available in the MATLAB environment, it is introduced into the computational procedure in
accordance with the following syntax:

Kr = gallery('krylov', Ad, Bd, N).

a 9ol /| woj "ol gZ02

The application of the A. N. Krylov matrix in computational environments makes it possible to
fundamentally change the modeling process, to construct an optimal estimation system for the state vector
variables, and ultimately to use CVX technologies for generating trajectory processes of the state and
control variables in the optimal mode.

The MATLAB script sah051hhK.m for solving the problem of optimal discrete-time system
synthesis is presented below:
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sah051hhK.m.

e e oe

1. JVcxonHbele OaHHHE

A=[0 1;0 -1]; B=[0 1]'; C=[1 0]; D=0;
sys=ss(A,B,C,D)

A=sys.A; B=sys.B

o

o

2. llepexon K OUCKPETHOM MOIEJM
=0.1;
Ad,Bd]=c2d(A,B,T)
3. IpmMeHeHMe MaTpuubl KpeUrioBa IJIsS UMCJIEHHOT'O pelleHMsS B dopmMaTe CVX
N=20;
Kr=gallery('krylov',Ad,Bd,N)

o° — H

o°  oP

4. Ouenka BekToOpa W M GOPMMPOBAHME MUHVMMBVPYEMOM HOPMEL
sl=inv (Kr*Kr') ;

s2=s1*Kr;

wl=[5 2]*s2;

w=wl'

o

5. OuenHka BeKTOpa VYIIpaBJIEHVA M pacdeT IIepPeMeHHBEIX COCTOAHNMA

o°  oP

10 IMCKPETHOV MOIesu
ml=N;
cvx_begin
variable u(ml)
minimize (norm(u-w,2));
subject to
cvx_end
U=rot90(u,2) ;

X=[1;
xa0=[0 0]"';
for p=1:20;
if p<2
x=Ad*xa0+Bd*U (1) ;
else
x=Ad*x+Bd*U (p) ;
end
X=[X x];
end
X=[xal0 X];
% 6. I'paduueckue MHOCTPOEHUS
k=0:20;

U=[U(1);U];
stairs(k,X"', 'LineWidth', 3);

hold on
stairs (k,U, 'LineWidth',2),grid
xlabel (' k*T, T=0,1c.")

ylabel (' X1, X2, U")
title ('YnpaBieHre C npuMeHeHueM MaTpuubl A.H. KpoooBa')
hold off

The script is conditionally divided into several sections. The first section presents the initial data. In
the second section, the transition from the continuous-time model to the discrete-time model is performed
with a discretization step T=0.1 s. The third section specifies the number of steps N=20 and selects the
Krylov matrix. In the fourth and fifth sections, the estimation of the column vector w is carried out. The
estimation of this vector represents the most computationally intensive part of the procedure, which is
based on solving equation (21).
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The estimation of w determines the correctness of fitting the elements of the control vector and
justifies the introduction of the norm(u — w) for computing the optimal operating mode within the cvx
begin — cvx_end. In essence, the solution obtained using the least-squares method is reformulated as
a convex programming problem, which enables computations to be performed within an iterative loop.
This is followed by the computation of the system trajectory in the optimal mode. To ensure the required
sequence of the optimal control action applied to the system, a vector rotation operator that rotates the
control vector u by 180° is used.

The sixth section contains operators that define the graphical representations. The stairs operator
is used, according to which only a limited number of graphical functions can be employed to control
line widths. Therefore, graph superposition is implemented using the 4old on operator, while exiting the
superposition mode is ensured by the hold off operator. The graphical representation of the solution of the
optimal boundary-value problem is shown in Fig. 3.

Ynparnetme ¢ npuaeHeHMed Matpiinl AH. Kpuinosa

T=0.1¢
Ad=[1 0.0852;0 0.9048]
Bd=[0.0048 0.0952]

o
7

(4,
—

-
c

A, X2, U
Noow
<

-
T

X1

0 2 4 i} 8§ 10 12 14 16 18 20
KT

Fig. 3. Trajectories of the discrete-time control system

As can be seen from Fig. 3, discrete control of the ship dynamic system in the optimal mode has been
implemented. Thus, the application of the A. N. Krylov matrix made it possible to correctly fit the elements
of the control vector and to use CVX technologies for the optimal estimation of the state variable vector.

Discussion

This study considers the application of analytical solutions to optimization problems based on
symbolic mathematics tools. The use of new methods and means of digital signal processing employing
CVX technologies and solvers intended for convex programming problems contributes to the improvement
and further development of optimal control system design technologies [14].

The solutions proposed in this paper regarding the application of analytical methods in control
problems of technological processes and production systems in water transport facilities may be of interest
to specialists using digital technologies to enhance the efficiency and quality of problem solving.

Conclusions

Based on the conducted research, the following conclusions can be drawn:

1. Analytical solutions of optimization problems using symbolic mathematics functions constitute
a reliable approach to improving the efficiency and quality of designing ship dynamic systems for
stabilization, positioning, monitoring, and course control.

2. The application of the A. N. Krylov matrix in digital optimization problems is a necessary
condition for improving modeling processes and advancing computer technologies intended for the
analysis and synthesis of high-dimensional dynamic systems.

a 9ol /| woj "ol gZ02
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3. The use of CVX technologies for improving computational processes, designed to solve convex
programming problems and to synthesize dynamic systems based on linear matrix inequalities adapted to
linear and quadratic programming techniques, significantly expands the class of solvable problems within
the modern MATLAB computational environment.

4. The presented quantitative estimates of solutions obtained using symbolic computations confirm
the correctness of the proposed approaches and demonstrate their high efficiency.
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APPENDIX

MATLAB Codes and Figure Explanations
This appendix provides concise explanatory notes for the MATLAB codes and the corresponding
figures presented in the paper. Due to the formal programming syntax, the MATLAB scripts are not
translated verbatim; instead, their functionality and relation to the graphical results are described.

MATLAB Codes
The MATLAB script sah051dd.m implements an analytical solution of a continuous-time optimal
control problem using the Symbolic Math Toolbox. The script defines the system state equations,
formulates the performance index and the Hamiltonian, derives the costate equations, and determines
the optimal control law. The resulting two-point boundary value problem is solved symbolically using the
dsolve function. Exact analytical expressions for the state, costate, and control variables are obtained and
subsequently visualized.
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A supplementary code segment applies CVX-based convex optimization to estimate the integration
constants of the general symbolic solution. This procedure ensures consistency between symbolic analytical
solutions and numerical boundary conditions.

The script sah051hhK.m is used for the synthesis of an optimal discrete-time control system. The continuous
model is discretized, and the A. N. Krylov matrix is employed to construct an optimal control sequence. The
estimation of the control vector is formulated as a convex optimization problem solved using CVX. The script
generates optimal state and control trajectories in discrete time.

Figure Explanations

Figure 1 illustrates the time evolution of the state variables under the action of the optimal control
input obtained from the symbolic solution of the continuous-time problem. The figure confirms the
consistency of the analytical solution with the imposed boundary conditions.

Figure 2 presents control and state trajectories for different boundary conditions, demonstrating the
flexibility of the symbolic solution framework and the exact analytical dependence of the system response
on the prescribed constraints.

Figure 3 shows the trajectories of the discrete-time control system synthesized using the Krylov
matrix and CVX optimization. The figure confirms the correctness of the discrete optimal control
formulation and its agreement with the theoretical results.

FIGURE CAPTIONS (ENGLISH VERSION)
Figure 1.

Time evolution of the state variables under the action of the control input u.

Legend:
X1, X2 — state variables
u — control input

Axes:

x-axis: Time, t (s)
y-axis: X1, X2, u

Text inside the figure:
Integration constants:
Ci=12.2097
C:=13.3966
Cs=2.3739
C4=14.5836

Figure 2.
Control of the dynamic system under different boundary conditions.

Subfigures:

(a) State trajectories Xu(t) and Xa(t)

(b) Control input u(t)

(c) Costate variable paf(t)

(d) State trajectories corresponding to alternative boundary conditions

Axes (for all subfigures):
x-axis: Time, t (s)
y-axis: State, costate, or control variables
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Note:

The figure illustrates the analytical solutions obtained

using symbolic computations for various bound-ary conditions.

Figure 3.

Trajectories of the discrete optimal control system.
Legend:

Xi(k), Xa(k) — discrete state variables

u(k) — discrete control input

Axes:

x-axis: Discrete time step, k

y-axis: State and control variables

Note:

The figure demonstrates the implementation of optimal discrete control
using the A. N. Krylov matrix and CVX-based optimization.

Remarks
The presented MATLAB codes serve as computational illustrations of the proposed methods, while

the fig-ures provide visual confirmation of the analytical and numerical results. Together, they demonstrate
the ef-fectiveness of combining symbolic computations with numerical optimization techniques for solving

opti-mal control problems in water transport systems.
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