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Forecasting the onset and end dates of ice phenomena on Arctic shipping rivers, such as the Pur River, is essential 
for navigation planning and ensuring transport accessibility under changing climatic conditions. The development 
of reliable forecasting models that outperform traditional averaged approaches is of considerable scientific and practical 
importance. This study presents the development and comparative analysis of five machine learning models for 
forecasting the dates of ice formation and ice clearance on the Pur River at the Samburg gauging station: a convolutional 
neural network (CNN), a fully connected neural network (Dense), a multilayer perceptron (MLP), a support vector 
regression model (SVR), and a random forest model. Twelve hydrometeorological parameters were used as input 
variables. Forecast performance was quantitatively evaluated using the mean absolute error (MAE), root mean square 
error (RMSE), and the coefficient of determination (R²). A comparison with an averaged baseline model showed 
that, for predicting ice-clearance dates, the fully connected neural network (Dense) demonstrated the best overall 
performance (MAE = 5.18 days, RMSE = 5.97 days, R² = 0.387). For predicting ice-formation dates, the multilayer 
perceptron (MLP) model exhibited the lowest prediction error and the highest explanatory power (MAE = 3.59 days, 
RMSE = 4.21 days, R² = 0.315). The results indicate that more complex machine learning models do not necessarily 
provide superior performance when forecasting complex hydrological events such as ice phenomena. Consequently, 
the optimal forecasting model should be selected individually for each predicted date.
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НА АРКТИЧЕСКИХ СУДОХОДНЫХ РЕКАХ (НА ПРИМЕРЕ РЕКИ ПУР)
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Темой исследования является прогнозирование сроков начала и окончания ледовых явлений на арктиче-
ских судоходных реках, таких как река Пур, которое является важной процедурой для планирования навигации 
и обеспечения транспортной доступности в условиях меняющегося климата. В исследовании представлена 
разработка и сравнительный анализ пяти моделей машинного обучения для прогнозирования дат появления 
ледовых явлений и очищения ото льда реки Пур в замыкающем створе Самбург: сверточная нейронная сеть 
(CNN), полносвязная нейронная сеть (Dense), многослойный перцептрон (MLP), метод опорных векторов 
(SVR) и случайный лес (Random Forest). В качестве входных данных использовались 12 гидрометеорологических 
параметров. Проведена количественная оценка качества прогнозов с использованием метрик MAE (средняя 
абсолютная ошибка), RMSE (среднеквадратичная ошибка) и R² (коэффициент детерминации). Сравнение 
с осредненной моделью показало, что для прогноза дат очищения ото льда наилучшие результаты по совокуп-
ности метрик продемонстрировала полносвязная нейронная сеть (Dense) (MAE = 5,18, RMSE = 5,97, R² = 0,387). 
Для прогноза дат появления ледовых явлений наименьшую ошибку и наивысшую объясняющую способность 
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показала модель на основе многослойного перцептрона (MLP) (MAE= 3,59, RMSE = 4,21, R² = 0, 315). Результа-
ты свидетельствуют о том, что для прогнозирования сложных гидрологических событий, таких как ледовые 
явления, эффективность сложных моделей машинного обучения не всегда является оптимальной. Наилучшая 
модель должна подбираться отдельно для каждой прогнозируемой даты.

Ключевые слова: река Пур, ледовые явления, машинное обучение, нейронные сети, прогнозирование, 
арктическое судоходство, транспортное обеспечение, наращивание грузопотока, производственно-ло-
гистический цикл, ключевые метеопараметры.
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Волкова Н. А. Долгосрочный прогноз сроков безледоставного периода на арктических судоходных 
реках (на примере реки Пур) / Н. А. Волкова // Вестник Государственного университета морско-
го и речного флота имени адмирала С. О. Макарова. — 2025. — Т. 17. — № 6. — С. 816–831. DOI: 
10.21821/2309-5180-2025-17-6-816-831. — EDN EIBDXB.

Введение (Introduction)
В контексте реализации государственной стратегии развития Арктической зоны Российской 

Федерации и наращивания грузопотока по Трансарктическому транспортному коридору возрас-
тает роль крупных судоходных рек как критически важных транспортных артерий, обеспечива-
ющих логистику промышленных кластеров. Река Пур, протекающая в зоне активного освоения 
нефтегазовых месторождений, является наглядным примером такой ключевой водной магистрали. 
Эффективность всего производственно-логистического цикла — от снабжения вахтовых поселков 
до вывода готовой продукции — жестко лимитирована продолжительностью навигационного окна, 
определяемого сроками начала и окончания ледовых явлений.

В условиях наблюдаемой климатической дестабилизации, проявляющейся в Арктике в виде 
аномального роста температур и увеличения межгодовой изменчивости ледовых условий, тради-
ционные подходы к планированию навигации становятся недостаточными [1]. Неточность прогноза 
дат вскрытия и замерзания реки приводит к значительным экономическим рискам, включая простои 
флота, срыв контрактных обязательств и повышение аварийности. В этой связи разработка и вне-
дрение высокоточных методов долгосрочного прогнозирования ледового режима, адаптированных 
к современной климатической реальности и учитывающих комплекс гидрометеорологических фак-
торов, приобретает характер неотложной научно-практической задачи, решение которой напрямую 
влияет на надежность транспортного обеспечения арктических проектов [2–4].

Существующий арсенал методов прогнозирования ледовых явлений как в отечественной1 [5–8], 
так и в зарубежной практике [9, 10] в основном базируется на статистических зависимостях между 
датами установления / разрушения ледового покрова и ключевыми метеопараметрами: температурой 
воздуха и суммой температур. Несмотря на свою историческую обоснованность, эти подходы демон-
стрируют растущую неадекватность применительно к арктическим рекам по следующим причинам:

1. Климатические изменения происходят нелинейно: статистические модели, калиброванные 
на основе данных XX в., не учитывают ускоренный характер современных климатических про-
цессов, что ведет к систематическому смещению прогнозов.

2. Факторы воздействуют комплексно: традиционно модели часто опираются на ограниченный 
набор предикторов, не учитывая синергетического влияния таких параметров, как скорость ветра, 
высота снежного покрова, интенсивность осадков и др.

3. Большинство методик слабо приспособлены для оперативного учета новых данных и бы-
строй перенастройки в условиях меняющегося режима реки.

4. Существующие решения в основном ориентированы на краткосрочные прогнозы, в то время 
как стратегическое планирование требует сезонных и многомесячных оценок.

Перспективным направлением преодоления этих ограничений является применение алгорит-
мов машинного обучения [11–16], способных выявлять сложные нелинейные взаимосвязи в больших 
массивах гетерогенных данных. Однако их сравнительная эффективность для прогнозирования 
конкретных ледовых фаз на арктических реках требует тщательной валидации.

1	 Руководство по гидрологическим прогнозам. Вып. 3: Прогноз ледовых явлений на реках и водохранили-
щах. Л.: Гидрометеоиздат, 1989. 168 с.
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Целью исследования является разработка и сравнительный анализ эффективности различных 
алгоритмов машинного обучения для прогнозирования дат начала и окончания ледовых явлений 
на арктических судоходных реках на примере реки Пур, с последующей идентификацией опти-
мальной модели для оперативного планирования навигации.

Задачи исследования:
–  сформировать репрезентативный массив исходных данных на основе многолетних ги-

дрометеорологических наблюдений, включающий 12 ключевых параметров (x1–x12), влияющих 
на ледовый режим реки Пур в створе Самбурга;

–  реализовать и обучить пять различных архитектур машинного обучения: сверточную 
нейронную сеть (CNN), полносвязную нейронную сеть (Dense), многослойный перцептрон (MLP), 
метод опорных векторов (SVR) и случайный лес (Random Forest);

–  провести верификацию точности прогностических моделей с использованием комплекса 
метрик качества: средней абсолютной ошибки (MAE), среднеквадратичной ошибки (RMSE), а также 
коэффициента детерминации (R²);

–  выполнить сравнительный анализ эффективности моделей между собой и с базовой осред-
ненной моделью отдельно для прогноза дат очищения ото льда и дат появления ледовых явлений, 
оценить продолжительность безледоставного периода.

Методы и материалы (Materials and Methods)
Река Пур образуется от слияния рек Пяку-Пур и Айваседа-Пур. Площадь бассейна в месте 

слияния этих рек равна 57 500 км2 и возрастает к устью реки Пур до 112 000 км2. От истоков реки 
Пяку-Пур общая длина реки Пур составляет 1024 км.

В настоящее время река Пур от устья до Тарко-Сале является судоходной рекой (табл. 1). По на-
вигационным условиям р. Пур можно разделить на два участка: верхний — от пос. Тарко-Сале 
до Уренгоя и нижний — от Уренгоя до устья реки Пур. Верхний участок имеет большое количе-
ство перекатов и менее удобен для судоходства, чем нижний. При снижении уровня до меженного 
в средний по водности год на верхнем участке реки насчитывается 14 перекатов с глубинами ниже 
гарантированных. Характерной особенностью реки на этом участке является незначительная про-
тяженность отдельных перекатов, достигающая 150–200 м при длине плесов 5–7 км. Наиболее за-
труднительным на верхнем участке является перекат, расположенный на 33 км ниже Тарко-Сале [3].

По условиям обеспечения безопасности судоходства установлены следующие категории 
внутренних водных путей для реки Пур:

–  внутренние водные пути с гарантированными габаритами судовых ходов и освещаемой 
навигационной обстановкой (первая категория);

–  внутренние водные пути с гарантированными габаритами судовых ходов и со светоотра-
жающей навигационной обстановкой (вторая категория);

–  внутренние водные пути без гарантированных габаритов судовых ходов и без навигаци-
онной обстановки (седьмая категория).

Нижний участок реки Пур является наиболее благоприятным для судоходства. Глубины 
здесь сравнительно одинаковые и удерживаются на уровне гарантированных. Наиболее трудный 
перекат в многоводные годы находится на 185–187‑м км вниз по течению от Тарко-Сале. В малово-
дные и средние по водности годы с глубинами меньше гарантированных насчитывается до пяти-
шести перекатов. Короткий навигационный период реки Пур (в среднем 96–112 дней) является 
типичным для рек арктической зоны России (например, в Обь-Иртышском и Ленском бассейнах 
навигация также длится около 125–150 сут и открывается в июне-июле). В то же время на юге 
и юго-западе страны, а также в крупных городах, таких как Москва, навигация может длиться 
до 240 сут и быть круглогодичной. Как и многие другие крупные арктические реки, Пур является 
жизненно важной транспортной артерией в регионе, где практически отсутствуют другие пути 
сообщения, играя важную роль в транспортировке грузов для нефтегазовых месторождений 
(Уренгойское, Губкинское).
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Исследование проводилось для реки Пур в замыкающем створе Самбург. Выбор данного 
створа обусловлен его репрезентативностью для нижнего течения реки, где формируются оконча-
тельные сроки ледовых процессов, важные для навигации.

Для прогнозирования использовались данные метеостанции Тарко-Сале, как наиболее репре-
зентативной для бассейна реки Пур. Период анализа составил 57 лет (1967–2023 гг.). В качестве про-
гнозируемых параметров использовались фактические даты начала и окончания ледовых явлений.

Для достижения целевой заблаговременности в качестве предикторов предполагается исполь-
зовать факторы, характеристики которых формируются задолго до наступления прогнозируемых 
явлений. Соответственно предикторный горизонт охватывает данные за предшествующие сезоны, 
в частности среднесуточные значения за период с 1 сентября предшествующего года до 28 февраля 
года, для которого создается прогноз. В качестве входных данных используются следующие параме-
тры по метеорологической станции Тарко-Сале3: температура воздуха, атмосферные осадки, средняя 
скорость ветра, высота снежного покрова, температура поверхности почвы, атмосферное давление 
на уровне станции, дефицит насыщения водяного пара, относительная влажность, температура точки 
росы. Дополнительно используются индекс арктической осцилляции (АО), индекс североатланти-
ческого колебания (NAO) и ежедневные данные уровня воды реки Пур в створе Уренгой за тот же 
промежуток времени. Индексы североатлантического колебания (NAO) и арктического колебания 
(AO) получены с сайтов https://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/ao.shtml 
и https://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml.

Реализованы и протестированы пять архитектур машинного обучения:
1)  сверточная нейронная сеть (CNN) для выявления пространственно-временных зависимо-

стей данных;
2)  полносвязная нейронная сеть (Dense) как базовый подход глубокого обучения;
3)  многослойный перцептрон (MLP) с оптимизацией числа скрытых слоев;
4)  метод опорных векторов (SVR) с радиально-базисной функцией ядра;
5)  случайный лес (Random Forest) как представитель ансамблевых методов.
Для количественной оценки точности прогнозов использовались метрики:
–  MAE (Mean Absolute Error) — средняя абсолютная ошибка;
–  RMSE (Root Mean Square Error) — среднеквадратичная ошибка;
–  R² — коэффициент детерминации.
Дополнительно рассчитывалась «Осредненная модель» как базовый уровень для сравнения 

эффективности сложных алгоритмов. Все модели тестировались на тестовой выборке, не участво-
вавшей в обучении. Использовалась k-кратная перекрестная валидация (k = 5) для обеспечения 
статистической значимости результатов. Предобработка данных включала нормализацию пара-
метров и устранение выбросов.

Реализация моделей выполнена в среде Python 3.9 с использованием библиотек scikit-learn, 
TensorFlow и Keras для обеспечения воспроизводимости результатов.

Результаты (Results)
Ряды наблюдений за среднесуточными датами ледовых явлений по створу Самбург за период 

1937–2023 гг. получены по материалам4,5. Для приведения временных меток к числовому формату, 
пригодному для обработки алгоритмами машинного обучения, выполнено преобразование кален-
дарных дат начала и окончания ледовых явлений в порядковые номера дней года. В данной системе 

3	 Свидетельство о государственной регистрации базы данных 2020621470 Российская Федерация. Науч-
но-прикладной справочник «Климат России» / В. Н. Разуваев, О. Н. Булыгина, Н. Н. Коршунова [и др.]; заяв. и 
патентобл. Федеральное государственное бюджетное учреждение «Всероссийский научно-исследовательский ин-
ститут гидрометеорологической информации — Мировой центр данных». №  2020620899; заявл. 09.06.2020; опубл. 
18.08.2020. EDN MXYBEY.

4	 Гидрологический ежегодник. Т. 6, вып. 0-9. Л.: Гидрометеоиздат, 1936–2012.
5	 Автоматизированная информационная система государственного мониторинга водных объектов [Элект-

ронный ресурс]: Режим доступа: https://gmvo.skniivh.ru (дата обращения 01.09.2025).



В
ы

п
ус

к
4

821

 2025 год. Том 17. №
 6

отсчета 1 января соответствует значение 1; 31 декабря — значение 365 (или 366 для високосного года). 
Данное преобразование позволяет линеаризовать временные данные, исключить циклическую 
природу календарных дат, упростить вычисление временных интервалов между событиями, по-
высить эффективность обучения моделей за счет работы с непрерывными числовыми признаками. 
Все дальнейшие расчеты и прогнозы выполнялись в данной системе координат с обратным преоб-
разованием в календарный формат для интерпретации конечных результатов.

Для выявления структурных изменений в исследуемых временных рядах применен непара-
метрический критерий Петтитта (Pettitt’s test), который является инструментом для обнаружения 
единственной точки изменения в последовательности данных. Данный критерий не требует пред-
положений о нормальности распределения исходных данных и устойчив к выбросам. Уровень 
значимости установлен на стандартном уровне α = 0,05.

Результаты применения критерия Петтитта для ряда дат окончания ледовых явлений на 
реке Пур в створе Самбург выявили наличие статистически значимой структурной точки перелома 
(рис. 1): статистика критерия K = 289,45; год изменения 1990; p-value составляет 0,0048. Полученное 
значение p-value (0,0048) существенно ниже критического уровня значимости 0,05, что позволяет 
с высокой степенью достоверности отвергнуть нулевую гипотезу об однородности временного ряда 
и принять альтернативную гипотезу о наличии структурного изменения.

Рис. 1. Результаты применения критерия Петтитта  
для дат очищения ото льда на реке Пур в створе Самбург

По данным анализа рис. 1 и табл. 2 видно, что наблюдается статистически значимое снижение 
среднего значения показателя на 6,84 дня: с 12 июня по 5 июня. Стандартное отклонение увели-
чилось на 35,75 %, что свидетельствует о существенном росте изменчивости данных после 1990 г. 
Обнаруженная точка изменения указывает на смену режима функционирования исследуемой систе-
мы, что может быть связано с изменением внешних факторов или внутренних процессов в 1990 г.

Таблица 2
Сравнительный анализ статистических показателей до и после точки изменения

Параметр До 1990 г. После 1990 г. Изменение
Среднее значение 161,40 (12 июня) 154,56 (5 июня) –6,84 дня
Стандартное отклонение 6,32 8,58 +35,75 %

Результаты применения критерия Петтитта для ряда дат появления ледовых явлений на реке 
Пур в створе Самбург (рис. 2) выявили наличие статистически значимой структурной точки пере-
гиба: статистика критерия (K) составила 827,0; год изменения 1993; p-value равно 0,00422.
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Рис. 2. Результаты применения критерия Петтитта  
для дат появления ледовых явлений на реке Пур в створе Самбург

По данным анализа (рис. 2, табл. 3) видно, что наблюдается достоверное смещение среднего 
значения показателя на 5,9 дней: с 9 октября по 15 октября. Стандартное отклонение увеличилось 
на 6,14 %, что свидетельствует об умеренном росте изменчивости данных после 1993 г. Высокая 
статистическая значимость результата (p < 0,01) позволяет с вероятностью 99,58 % утверждать, 
что обнаруженное изменение не является случайным. Величина статистики K = 827,0 указывает 
на выраженность структурного сдвига, что подтверждает надежность полученных результатов.

Таблица 3
Сравнительный анализ статистических показателей до и после точки изменения

Параметр До 1993 г. После 1993 г. Изменение
Среднее значение 281,07 (9 октября) 286,97 (15 октября) +5,90 дней
Стандартное отклонение 6,09 6,47 +6,14 %

Исходные данные сведены в таблицы по годам. Для примера фрагмент прогнозной модели 
представлен в табл. 4. Для формирования обучающей, проверочной и тестовой выборок разработан 
алгоритм, выбирающий только те векторы входных / выходных значений, в которых отсутствуют 
пропуски значений параметров.

Реализованные архитектуры имеют следующие параметры:
1) сверточная нейронная сеть (CNN): три сверточных слоя с возрастающей размерностью (128, 

256, 512 фильтров), слои BatchNormalization и Dropout для регуляризации; MaxPooling для умень-
шения размерности, полносвязные слои для финального прогнозирования;

2) полносвязная нейронная сеть (Dense): шесть полносвязных слоев с уменьшающейся раз-
мерностью (1024 → 32 нейронов), BatchNormalization и Dropout для предотвращения переобучения; 
адаптация под различное количество признаков;

3) многослойный перцептрон (MLP): архитектура адаптивная в зависимости от количества 
признаков, для 12 признаков 512–256–128–64 нейронов, активация ReLU, оптимизатор Adam;

4) метод опорных векторов (SVR): ядро радиально-базисное (RBF), регуляризация адаптивный 
параметр C, кэширование 1000 МБ для ускорения вычислений;

5) случайный лес (Random Forest): количество деревьев 200–300; глубина деревьев 20–25; 
критерий разделения адаптивный в зависимости от количества признаков.
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Для построения и валидации прогнозной модели применяется комплексный подход, вклю-
чающий стратегию обучения с адаптивными механизмами регуляризации и многоаспектную 
оценку качества. В основу процесса обучения нейронной сети, реализованного в функции (Train_
and_Evaluate_Model), заложено использование двух ключевых механизмов обратной связи: ранней 
остановки (EarlyStopping) и динамического снижения скорости обучения (ReduceLROnPlateau).

Для обеспечения устойчивости процесса обучения все входные признаки и целевые пере-
менные подвергаются стандартизации с использованием метода StandardScaler, который приводит 
распределение данных к виду с нулевым математическим ожиданием и единичной дисперсией. Ис-
ходные данные разделяются на три независимые подвыборки: обучающую (80 %), валидационную 
(10 %) и тестовую (10 %). Разделение гарантирует объективную оценку обобщающей способности 
модели и минимизирует риск информационной утечки.

Качество прогнозов оценивалось с использованием трех стандартных метрик:
1) MAE (Mean Absolute Error) — средняя абсолютная ошибка, характеризующая среднее от-

клонение прогноза от истинного значения в абсолютной шкале;
2) RMSE (Root Mean Square Error) — среднеквадратическая ошибка, обладающая повышен-

ной чувствительностью к значительным выбросам, что позволяет выявлять случаи существенных 
систематических ошибок;

3) R² (коэффициент детерминации) — показатель, определяющий долю дисперсии зависимой 
переменной, объясняемую моделью, и служащий индикатором ее общей адекватности.

Алгоритм работы программы представлен на рис. 3.

Рис. 3. Алгоритм работы программы

Для повышения точности, устойчивости и обобщающей способности прогнозов дат начала 
и окончания ледовых явлений реализована стратегия ансамблирования на основе усреднения пред-
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сказаний независимо обученных моделей. Ансамблирование позволяет преодолеть ограничения 
отдельных моделей, различающихся архитектурой, параметрами и склонностью к переобучению 
или смещению.

К преимуществам ансамблирования относятся:
–  снижение дисперсии ошибки, поскольку усреднение прогнозов компенсирует случайные 

отклонения отдельных моделей, что эффективно при наличии шума в исходных данных;
–  повышение устойчивости к выбросам, так как аномальные прогнозы, вызванные нестандарт-

ными погодными условиями в отдельные сезоны, нивелируются за счет коллективного решения;
–  балансировка систематических смещений, поскольку различные архитектуры нейронных 

сетей обладают разными типами смещений, которые при усреднении частично компенсируются, 
обеспечивая более сбалансированный и надежный результат;

–  улучшение обобщающей способности, так как ансамбли демонстрируют более стабильное 
качество на независимых данных (тестовой выборке и при межгодовом прогнозировании), превос-
ходя отдельные модели в условиях климатической изменчивости.

При условии некоррелированности ошибок моделей дисперсия среднего прогноза уменьша-
ется пропорционально количеству моделей N.

На рис. 4–6 представлены результаты прогнозирования.

Рис. 4. Хронологический график хода  
дат очищения ото льда и результаты прогнозирования

Рис. 5. Хронологический график хода  
дат очищения ото льда и осредненные результаты прогнозирования



В
ы

п
ус

к
4

826

 2
02

5 
го

д.
 Т

ом
 1

7.
 №

 6

	            а)

	            б)

Рис. 6. Хронологический график хода дат появления ледовых явлений:  
а — результаты прогнозирования; б — осредненные результаты прогнозирования

В табл. 5 по результатам прогнозирования выполнено сравнение качества разных моделей.
Таблица 5

Сравнение качества прогнозирования дат по разным моделям

Модель
Метрики качества прогноза  

дат окончания ледовых явлений
Метрики качества прогноза  
дат начала ледовых явлений

MAE RMSE R2 MAE RMSE R2
CNN 6,68 7,57 0,014 4,64 5,73 –0,267
Dense 5,18 5,97 0,387 4,56 4,65 0,164
MLP 7,33 7,88 –0,069 3,59 4,21 0,315
SVR 6,47 7,47 0,039 4,42 5,09 –0,003
Random_Forest 6,32 7,80 –0,047 4,53 4,73 0,137
Ансамблевая 3,72 4,99 0,026 3,12 4,00 0,485

По табл. 5 видно, что для прогноза окончания ледовых явлений наилучшие результаты пока-
зывает модель Dense (MAE = 5,18, RMSE = 5,97, R² = 0,387), наихудшие — модель MLP (MAE = 7,33, 
RMSE = 7,88, R² = –0,069). Все модели демонстрируют относительно низкое качество (R² < 0,4).

Для прогноза начала ледовых явлений наилучшие результаты показала ансамблевая модель 
(MAE = 3,12, RMSE = 4,00, R² = 0,485), хорошие результаты — модель MLP (MAE = 3,59, RMSE = 4,21, 
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R² = 0,315), наихудшие результаты — модель CNN (MAE = 4,64, RMSE = 5,73, R² = –0,267). Следова-
тельно, ансамблевая модель является наиболее универсальным решением, особенно для прогноза 
появления ледовых явлений. Полносвязная сеть (Dense) оптимальна для прогноза очищения ото льда. 
CNN архитектура показала наихудшие результаты и не рекомендуется к использованию. Прогноз 
начала ледовых явлений в целом более точен, чем прогноз их окончания. Разброс ошибок (RMSE) 
существенно превышает среднюю ошибку (MAE), что указывает на наличие значительных выбросов 
в прогнозах. Наилучшей стратегией является использование ансамблевого подхода для появления 
ледовых явления и Dense сети для дат очищения ото льда либо применение ансамблевой модели 
для обоих типов прогнозов.

На основании полученных прогнозов дат начала и окончания ледовых явлений также рассчи-
тана прогнозируемая продолжительность безледоставного периода для каждой модели как разность 
между датой окончания и датой начала ледовых явлений (рис. 7).

Рис. 7. Хронологический график продолжительности  
безледоставного периода и результаты прогнозирования

Результаты оценки точности прогнозирования данного интегрального показателя представ-
лены в табл. 6.

Таблица 6
Сравнение качества прогнозирования продолжительности безледоставного периода  

по разным моделям

Модель MAE RMSE R2

CNN 10,40 13,91 –22,81
Dense 6,66 8,76 0,692
MLP 9,82 12,49 0,592
SVR 5,26 7,45 0,082
Random_Forest 7,63 10,50 –4,636
Ансамблевая 4,43 6,19 0,580

Анализ результатов демонстрирует существенный разброс в точности прогнозирования про-
должительности навигационного периода между различными архитектурами.

Наилучшие результаты по метрикам MAE (4,43 дня) и RMSE (6,19 дней) показала ансамблевая 
модель, что свидетельствует о ее высокой надежности для оценки длительности безледоставно-
го периода. Модель Dense продемонстрировала наивысшее значение коэффициента детермина-
ции R² (0,692), что указывает на ее способность объяснять большую долю дисперсии в данных. 
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В то же время модели CNN и Random Forest показали статистически неадекватные результаты 
(R² = –22,813 и –4,636 соответственно), что свидетельствует о их неприменимости для решения 
данной конкретной задачи в использованной конфигурации.

Полученные результаты свидетельствуют о том, что высокая точность прогноза отдельных 
ледовых фаз (начала и окончания) не гарантирует столь же точного прогноза их разности — про-
должительности периода. Кумуляция ошибок, неизбежно возникающая при расчете разности двух 
спрогнозированных дат, становится критическим фактором, определяющим итоговое качество 
прогноза навигационного окна.

Обсуждение (Discussion)
Проведенное исследование выявило существенную зависимость точности прогнозирования 

от типа решаемой задачи. Полученные результаты демонстрируют, что для различных ледовых 
характеристик оптимальными оказываются разные модели. Так, модель MLP показала наилучшие 
результаты для прогноза начала ледовых явлений, в то время как для прогноза даты очищения ото 
льда наиболее эффективной оказалась полносвязная нейронная сеть Dense. Это свидетельствует 
о том, что физические процессы, определяющие начало и окончание ледовых явлений, имеют раз-
личную природу и требуют индивидуального подхода к их прогнозированию.

Интерес представляет анализ точности прогноза продолжительности безледоставного периода. 
Наилучшие результаты по комплексным метрикам показала ансамблевая модель, что указывает 
на кумулятивный характер ошибок при расчете разности дат. Данный факт имеет практическое 
значение, поскольку свидетельствует о необходимости использования специализированных мо-
делей для прогнозирования непосредственно продолжительности навигации, а не вычисления ее 
как разности двух прогнозов.

Установленная заблаговременность прогноза в 3–6 месяцев представляет значительную 
практическую ценность. Возможность формирования прогноза в первой декаде марта на основе 
данных до 28 февраля позволяет оперативно планировать всю навигационную кампанию. Такой 
временной горизонт достаточен для заключения договоров, планирования логистических цепочек 
и распределения ресурсов.

Следует отметить, что исследование выявило ограниченную применимость сложных ар-
хитектур, таких как CNN и Random Forest, для решения данной задачи. Это может быть связано 
как с недостаточным объемом данных для обучения сложных моделей, так и с особенностями самих 
ледовых процессов. Перспективным направлением дальнейших исследований представляется раз-
работка ансамблевых моделей, сочетающих преимущества простых и сложных архитектур.

Заключение (Conclusion)
В результате проведенного исследования разработана и апробирована методика долгосрочного 

прогнозирования сроков ледовых явлений на арктических судоходных реках на примере реки Пур. 
Для прогнозирования использовался комплекс гидрометеорологических данных, включающий 12 па-
раметров (среднесуточная температура воздуха, сумма осадков, скорость ветра, высота снежного 
покрова и другие) по данным метеостанции Тарко-Сале.

Особенностью методики является ее значительная заблаговременность. Использование дан-
ных, актуальных на 28 февраля, позволяет сформировать прогноз в первой декаде марта с опереже-
нием от 3 до 6 месяцев относительно наступления прогнозируемых событий. На основе этих данных 
получен прогноз дат начала ледостава, окончания ледохода и, как следствие, продолжительности 
безледоставного периода.

Сравнительный анализ пяти архитектур машинного обучения показал следующее:
–  для прогноза появления ледовых явлений наилучшие результаты показывает многослойный 

перцептрон (MLP) с ошибкой 3,59 дня;
–  для прогноза очищения ото льда наиболее эффективной оказалась полносвязная нейронная 

сеть (Dense) с ошибкой 5,18 дней;
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–  прогноз продолжительности безледоставного периода наиболее точен при использовании 
осредненной модели (ошибка 4,43 дня).

Полученные результаты демонстрируют практическую применимость методов машинного 
обучения для решения задач гидрологического прогнозирования в Арктическом регионе. Разра-
ботанная методика может быть адаптирована для других арктических рек с аналогичными гидро-
логическими характеристиками и использована для оптимизации навигационного планирования 
и повышения безопасности судоходства. Для каждой реки необходим предварительный анализ 
факторов, влияющих на продолжительность безледоставного периода, и определение репрезента-
тивных метеорологических станций.

Результаты исследования готовы к оперативному внедрению в практику гидрологического 
прогнозирования и могут быть использованы органами управления транспортным комплексом, 
нефтегазовыми компаниями и другими заинтересованными организациями, осуществляющими 
деятельность в Арктической зоне Российской Федерации.

Перспективы дальнейших исследований связаны с расширением набора прогностических 
параметров за счет включения данных дистанционного зондирования, а также с разработкой ан-
самблевых моделей, комбинирующих преимущества отдельных алгоритмов для повышения общей 
точности прогноза.
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